Skip to main content
  • Review
  • Published:

Managing pregnancy in inflammatory rheumatological diseases

Abstract

Historically, pregnancy in women with many inflammatory rheumatic diseases was not considered safe and was discouraged. Combined care allows these pregnancies to be managed optimally, with the majority of outcomes being favorable. Disease activity at the time of conception and anti-phospholipid antibodies are responsible for most complications. Disease flares, pre-eclampsia, and thrombosis are the main maternal complications, whereas fetal loss and intrauterine growth restriction are the main fetal complications. Antirheumatic drugs used during pregnancy and lactation to control disease activity are corticosteroids, hydroxychloroquine, sulphasalzine, and azathioprine. Vaginal delivery is possible in most circumstances, with cesarean section being reserved for complications.

Introduction

Autoimmune rheumatic disease covers a spectrum of conditions, including systemic lupus erythematosus (SLE), antiphospholipid syndrome (APS), rheumatoid arthritis (RA), other inflammatory arthropathies/spondyloarthropathies, systemic sclerosis (SSc), and systemic vasculitides. Historically, pregnancy was not deemed safe in women with multisystem rheumatic diseases, either because of the risk of that their condition would deteriorate or because of their medications. As this review will show, this view has changed and current opinion is that with good disease control, careful planning, and combined management, delivery of healthy babies is often possible. Family size is smaller in women with rheumatic diseases because of a combination of factors, including disease activity, drug exposure, psychosocial factors, and self-exclusion [1, 2].

Fertility

Inflammatory rheumatological diseases affect women of childbearing age, and fertility is an important consideration. Fertility is not usually affected by the rheumatic diseases; however, factors that impact on female fertility include cytotoxic drugs, amenorrhoea accompanying severe flares, and renal insufficiency [3].

The main cytotoxic drug that poses a threat to fertility is cyclophosphamide. It is known to cause premature ovarian failure, and the risk is dependent on the age at which it is started, the duration of treatment, and the cumulative dose. Boumpas and colleagues [4] showed that none of the women who were under the age of 25 years and who had not more than 7 pulses of intravenous cyclophosphamide developed sustained amenorrhoea. However, all the women who were over 30 years and who received at least 15 intravenous pulses of cyclophosphamide developed sustained amenorrhoea [4]. The risk varies with the regime used, and another study of 84 patients with SLE showed that two thirds of cases had successful pregnancies [5, 6].

Elizur and colleagues [7] suggested that fertility preservation should be offered to all women with severe renal/extrarenal manifestations of SLE or other systemic rheumatic diseases requiring cyclophosphamide at doses that might preclude them from having their own biological child. Options available include ovulation induction therapy, oocyte or embryo cryopreservation, or in vivo maturation of oocytes. Ovulation induction therapy may promote flares in patients with lupus and precipitate thromboembolism in women with antiphospholipid antibodies [8].

Effects of the rheumatological disease and pregnancy on the mother

Systemic lupus erythematosus

1. Disease activity

There is much debate in the literature as to whether lupus activity increases during pregnancy. Studies have involved varied cohorts of patients and controls, making the studies difficult to compare. The hormonal changes that occur in pregnancy seem to be responsible for inducing lupus activity, and it appears that 40% to 50% of patients have a measurable increase in disease activity. The risk of a severe flare is lower and is estimated at 15% to 30%. Flares are typically cutaneous, arthritic, or hematological. The risk of flare is increased if there is evidence of a flare within 6 months prior to conception, active lupus nephritis, very active lupus in the past, and/or discontinuation of medication [9–11]. There is a risk of flares in the postpartum period even if disease has been in remission before and during pregnancy. Diagnosis of lupus flare is important to distinguish from pregnancy-related physiological changes or complications. These features are outlined in Table 1[12].

Table 1 Features that help to distinguish systemic lupus erythematosus disease activity from pregnancy-induced changes

2. Pregnancy effects

Women with SLE are at an increased risk of developing medical complications during pregnancy, regardless of whether their lupus is active or not [13]. Owing to hormonal changes, the risk of thrombosis is increased two to three times during pregnancy and the first 6 weeks after delivery. There is a 5% to 10% risk that a pregnant woman with SLE will develop a thrombosis during this period, even in the absence of APS [14].

Women with SLE are at higher risk of maternal complications (disease flares, pregnancy-induced hyper-tension [PIH], pre-eclampsia, eclampsia, diabetes, or thrombosis) and fetal complications (recurrent fetal loss, growth restriction, or fetal distress in labor) [13]. As a result, they tend to have longer hospital stays and a higher rate of cesarean section. Maternal mortality, though rare, is increased approximately 20 times compared with that of women in general in the US [13, 15].

Pre-eclampsia is defined as PIH in association with proteinuria (greater than 0.3 g in 24 hours) and edema, but virtually any organ may be affected. This is a common pregnancy-related complication in SLE. About 25% of women with SLE develop pre-eclampsia, and the risk is higher for women with pre-existing hypertension, a history of lupus nephritis, or anti-phospholipid anti-bodies [13, 15]. Differentiating between active lupus nephritis and pre-eclampsia is crucial, and it is important to note that the two can coexist. The presence of hyper-tension with recent-onset proteinuria makes pre-eclampsia more likely than lupus nephritis, as hypertension is very rarely an early sign of active renal disease. Red or white cells in the urine in the presence of proteinuria are more likely to be due to lupus nephritis (after excluding infection, bleeding, or calculi). Urinary casts are the best marker for active renal lupus. Blood tests that help to distinguish active renal disease from pre-eclampsia include an increase in anti-double-stranded DNA (anti-dsDNA) titres or a 25% decrease in complement levels (C3 and C4) (even within the normal range) or both [12].

Antiphospholipid syndrome

1. Disease activity

APS is characterized by the presence of anti-phospholipid antibodies and either vascular thrombosis or pregnancy morbidity [16]. Primary APS occurs in isolation in 50% of patients, whereas secondary APS can be associated with any other autoimmune disease, most commonly SLE. The increased risk of thrombosis during all pregnancies is increased further in patients with APS and most often presents as deep vein thrombosis, pulmonary emboli, stroke, hepatic infarction, recurrent miscarriages, and premature delivery for fetal distress or pre-eclampsia. Anti-phospholipid antibodies may also initiate an inflammatory process involving the activation of complement that affects placental function and results in poor pregnancy outcomes [17]. Patients with lupus anticoagulant and/or previous pulmonary emboli are at risk of pulmonary hypertension that may deteriorate in pregnancy which is associated with a 50% risk of maternal mortality [18, 19].

2. Pregnancy effects

The presence of anti-phospholipid antibodies predisposes the patient to PIH, pre-eclampsia, and eclampsia, the last of which usually presents as one or more convulsions superimposed on pre-eclampsia. Pre-eclampsia may occur in patients with APS pregnancy earlier than in healthy women, from 22 weeks [20]. HELLP syndrome is a thrombotic microangiopathic disorder consisting of hemolysis, elevated liver enzymes, and low platelets. It presents typically in the third trimester but in patients with APS may present with pre-eclampsia earlier than in healthy women, even as early at 15 weeks of gestation [21–24].

Rheumatoid arthritis and other inflammatory arthropathies/spondyloarthropathies

1. Disease activity

In RA, provided that disease activity is stable at the time of conception, approximately 75% of patients notice an improvement in their condition within the first trimester and approximately a quarter go into remission [25]. The risk of flares is increased in the postpartum period, and the majority of women have flares within the first 3 months after delivery but only about 40% are of moderate severity [25, 26]. The immunological basis for these changes remains uncertain but is thought to involve changes in regulatory T cells, monocytes, and galactosylation levels of immunoglobulin G [27–31].

Pregnancy generally improves physical functioning in patients with RA but not in those with ankylosing spondylitis. Emotional and mental health during pregnancy are unaffected in both conditions [32]. Women with spondyloarthropathy generally notice an improvement in their peripheral arthritis and uveitis during pregnancy [33]; however, spinal disease tends to remain unchanged or worsen. Postpartum flares are common in the first 3 months following delivery and are unrelated to disease activity during pregnancy, duration of lactation, or time of return of menses [14].

2. Pregnancy effects

Pregnancy outcomes for women with RA and spondyloarthropathies tend to be favorable; however, these women have increased lengths of hospital stay, increased rate of premature rupture of membranes, and higher cesarean section delivery rates in comparison with healthy women [15]. There is no increased risk of pre-eclampsia in RA [34].

Systemic sclerosis

1. Disease effects

Scleroderma, the skin changes of SSc, tends not to change in pregnancy. Raynaud phenomenon usually improves because of the physiological increase in cardiac output. Gastroesophageal reflux disease is seen to worsen but is a common presentation in all pregnant women. Recurrent vomiting can cause Mallory-Weiss tears in the esophagus already thinned by disease-related fibrosis; therefore, prompt management is of importance in the prevention of life-threatening bleeding [35]. One of the most serious complications that occurs in pregnant women with SSc is renal crisis due to acute-onset severe hypertension. A daily increase in serum creatinine and lack of proteinuria in the early stages support a diagnosis of renal crisis due to SSc. Renal crisis is most common in patients with early diffuse SSc (within 5 years of symptom onset), anti-tropoisomerase and anti-RNA polymerase III antibodies, and exposure to high-dose corticosteroids [35]. Pulmonary hypertension is another serious complication and is associated with 50% maternal mortality, and most vigilance is required 48 to 72 hours after delivery. Screening should be done before pregnancy, and termination should be offered if the complication is diagnosed in pregnancy [36].

2. Pregnancy effects

Women with SSc have a higher rate of hypertensive disease, including pre-eclampsia, and have an increased length of hospital stay compared with normal women [15]. Elevated liver function tests and proteinuria with edema are more common in pre-eclampsia and HELLP syndrome than in SSc renal crisis. Hypertension or renal dysfunction due to pre-eclampsia, but not due to active SSc, will be resolved by delivery [12].

Vasculitides

1. Disease effects

There are very few prospective studies of vasculitides in pregnancy. Vasculitides can occur at any age but are generally more frequent in men and in women beyond their reproductive period [37]. Planning conception at a time of disease inactivity usually allows women with Wegener granulomatosis (WG), polyarteritis nodosa (PAN), or Churg-Strauss syndrome to remain well during pregnancy. They are at risk of deterioration during pregnancy and the first 6 weeks after delivery should conception occur when the disease is inadequately treated or newly active [38, 39].

Only 38 cases of WG have been reported in the literature: 21 were in remission at conception, 13 were diagnosed during pregnancy, and 4 had active disease at the time of conception. Flares have a bimodal distribution, most commonly occurring either in the first or second trimester or in the month after delivery. Maternal death has been reported twice, once following therapeutic abortion and once 1 month after delivery [38, 40, 41].

There are eight reports of pregnancy and PAN [12, 39, 42]. Conceiving at a time when PAN is active puts the mother at higher risk of death; hence, therapeutic abortion is recommended in the early phase of pregnancy, or high-dose corticosteroids with cyclophosphamide are recommended in the late stages [39].

In Churg-Strauss syndrome, respiratory and cardiac systems are most commonly affected during relapse. Asthma is more common but cardiac involvement can lead to irreversible myocardial damage requiring heart transplantation, so careful pre-pregnancy screening and management of pregnancy are critical [39, 43].

In Takayasu arteritis (TA), severe aortic valvular disease and aortic aneurysm are risk factors for maternal morbidity and fatality; therefore, pregnancy is discouraged in these patients [39]. Less frequently, heart failure, renal insufficiency, and cerebral hemorrhage have been reported. Despite these complications, the outcome of pregnancy is generally favorable provided that there is little delay in seeking medical advice [44].

Behçet disease (BD) improves during pregnancy in most patients; however, exacerbations occurred in about a sixth of patients in a case control study [45]. BD is associated with an increased risk of thrombosis and vascular involvement, including central venous thrombosis [46].

2. Pregnancy effects

Hypertensive disease is more common in women with WG and renal involvement than in normal pregnant women. It is the presenting feature in TA and pregnancy, and pre-eclampsia complicated 62% of cases in a recent single-center Indian study [47]. Pregnancy complications and cesarean section were significantly higher in BD patients than in controls [45], as with most other vasculitides, particularly TA and WG. Like lupus nephritis, renal vasculitis needs to be distinguished from pre-eclampsia; however, blood tests (c-ANCA [anti-neutrophil cytoplasmic antibody and classical cytoplasmic staining complete heart block] and anti-PR3 [anti-proteinase-3]) are helpful only in diagnosing renal vasculitis due to WG.

Effects of the autoimmune disease on the fetus

Fetal loss

'Fetal loss' incorporates spontaneous abortion from less than than 10 weeks, miscarriages from 10 to 19 weeks, and stillbirths from 20 weeks of gestation. The most important factors in predicting fetal loss in SLE, APS, SSc, and vasculitis are previous fetal loss, disease activity at conception (especially renal), maternal hypertension, and the presence of anti-phospholipid antibodies [12, 48]. Fetal loss is not increased in those with inflammatory arthropathies or spondyloarthropathies in the absence of maternal complications.

Intrauterine growth restriction

The risk of intrauterine growth restriction (IUGR) in SLE and APS pregnancies is about three times that in controls [15]. The risk of IUGR is increased in those with active disease at conception and in those with anti-phospholipid antibodies [9, 11, 16]. IUGR increases the risk of premature delivery and is thought to occur due to uteroplacental dysfunction secondary to thrombosis and complement activation; however, the exact mechanisms are unknown [17].

Premature delivery

Premature delivery, which is defined as occurring before 38 weeks of gestation, is common in lupus, APS, SSc, and the vasculitides [12, 13, 35, 44, 49]. Pre-term delivery is not associated with RA [34]. The most important complication of premature delivery is respiratory distress syndrome. In this condition, the newborn can suffer from respiratory distress due to insufficient surfactant. If premature delivery is imminent, the mother should be given a course of corticosteroids to promote fetal lung development at least 24 hours before birth. The current UK guidelines recommend two doses of betamethesome 12 mg intramuscularly (12 hours apart) or four doses of dexamethasone 6 mg (12 hours apart) [50].

Neonatal lupus

Neonatal lupus is a model of passive autoimmunity in mothers who carry anti-Ro (SSA) or anti-La (SSB) anti-bodies or both. Antibodies cross the placenta from about week 16 and are associated with (a) irreversible congenital complete heart block (CHB) in the fetus or (b) transient photosensitive rash on the face or scalp or various liver and hematological abnormalities or neurological manifestations in the newborn or (c) both. CHB is defined as atrioventicular block diagnosed in utero, at birth, or within the neonatal period (0 to 27 days after birth) and is present in approximately 1% to 2% of women with anti-Ro/La antibodies [51–53]. CHB is permanent, and although most children do well with pacemakers, the cumulative probability of survival at 3 years of age was only 80% in one report [52]. Neonatal lupus rash is present in 10% to 20%, and laboratory abnormalities (anemia, thrombocytopenia, neutropenia, and abnormal liver function tests) were detected in up to 27% of babies in a prospective study [51]. The risk of recurrence of CHB is about 20% in a subsequent pregnancy after an affected child [53].

Women who are at risk of having a baby with CHB are recommended to have regular monitoring [54], but guidelines vary among countries and among units. In the UK, the midwife should listen to fetal heart rate on a weekly basis to identify bradycardia from week 16 onwards and the baby should have heart rate confirmed while being scanned monthly. Formal fetal echocardiography occurs at the 20-week anomaly scan, and further echocardiograms are done if an abnormality is suspected. Partial heart block can be identified on fetal electro-cardiogram [54]. Intravenous immunoglobulin (IVIG) has been reported to successfully treat severe thrombocytopenia associated with neonatal lupus [55], but IVIG does not prevent recurrence of CHB [56]. All babies born to mothers with anti-Ro/La should have an electrocardiogram after birth to look for first- and second-degree heart block as they may progress to third-degree later.

Neonatal autoimmune thrombocytopenia

Transmission of anti-platelet antibodies across the placenta in women with APS is recognized to cause thrombocytopenia in infants. Occasionally, this presents as intracranial hemorrhage [57]. Thrombocytopenia usually resolves within 6 months as the mother's anti-bodies are cleared from the circulation. IVIG may be used as treatment for severe thrombocytopenia [58].

Pre-pregnancy considerations

To avoid or reduce the complications discussed above, pre-pregnancy planning and screening must be carefully undertaken. Combined care involving rheumatologists, nephrologists, hematologists, or other relevant physicians, obstetricians, and anesthetists is preferred for all but simple inflammatory arthropathies. Management of the pregnant patient with inflammatory rheumatological disease should be tailored to the individual's disease activity and history. Pregnancy during disease remission provides the best results as described above, and patients should be advised not to get pregnant until the disease has been well controlled for 6 months on non-teratogenic drugs that can be continued in pregnancy to reduce the risk of flares. A review of all medication that might affect pregnancy should be undertaken.

Side effects of teratogenic medication, such as methotrexate, cyclophosphamide, mycophenolate mofetil, or leflunomide, must be discussed prior to commencing treatment, and information on contraceptive methods should be offered with advice on when the drugs and contraception should be stopped prior to pregnancy (Table 2). Most contraceptive choices, including emergency contraceptive choices, can be offered to patients with rheumatological diseases, but there is a potential risk of thrombosis in APS if the patient is not fully anti-coagulated. Estrogen-containing contraceptives can be used with care in patients with mild non-active lupus but, owing to the increased risk of thrombosis, should be avoided in women with anti-phospholipid antibodies or APS [59–61].

Table 2 Commonly used drugs in inflammatory rheumatological diseases, their fetal effects, and recommendations during pregnancy

Disease activity should be assessed by standard criteria for each disease and potential risk factors for pregnancy complications - including anti-Ro/-La and anti-phospholipid antibodies (including IgG and IgM anti-cardiolipin and β2 glycoprotein-I antibodies and lupus anticoagulant), hypertension, and diabetes and raised serum creatinine, 24-hour proteinuria, or protein/creatinine ratio - should be identified [12, 48]. Echocardiography and lung function tests should be done if there have been cardiac, lung, or thrombotic complications, particularly if there is a risk of pulmonary hypertension [18, 19, 36].

As with other women planning pregnancy, a healthy diet and appropriate exercise are recommended and smoking, using illicit drugs, or drinking alcohol are discouraged. Folic acid (0.4 mg) should be started 3 months prior to pregnancy and continued until 12 weeks of gestation to prevent neural tube defects [62]. Women taking folate antagonists such as sulphasalazine are usually advised to take 5 mg daily throughout pregnancy and lactation.

Management of pregnancy

Drugs

A summary of drugs available for use in patients with inflammatory rheumatological conditions in pregnancy is provided in Table 2. Specific attention should be given to the most commonly used drugs: analgesia, corticosteroids, sulphasalazine, azathioprine, hydroxychloroquine, aspirin, and heparin and those that are contra-indicated [49, 63–66].

Paracetamol is the first-line analgesic. Mild opioids such as codeine or pethidine are preferred if needed, as they can be easily reversed. The concerns are that the newborn may present with respiratory depression or opioid dependency or both [67]. Tramadol has embryotoxic effects in animals and should be avoided.

Corticosteroids can be divided into non-fluorinated steroids (prednisolone and methyprednisolone) and fluorinated steroids (betamethasone and dexamethasone) [64]. Approximately 90% of prednisolone is metabolized by the enzyme 11-β-hydroxysteroid dehydrogenase in the placenta; as a result, about 10% reaches the fetus. It is widely used, therefore, to treat maternal disease or flares (or both) in pregnancy. Fluorinated steroids are not metabolized by the placenta and reach the fetus in their active form. These steroids are used to treat or prevent fetal complications, but reversal of CHB has not been achieved [54, 64, 68]. All steroids increase the maternal risk of hypertension, pre-eclampsia, premature rupture of membranes, infection, and diabetes, so the lowest effective dose must be used (ideally not more than 15 mg/day).

Sulphasalazine has been used for many years for arthropathies and inflammatory bowel disease in pregnancy. Hydroxychloroquine is an anti-malarial used mainly in the treatment of SLE and reduces the risk of maternal disease flare and possibly thrombosis and does not cause fetal damage. Women are recommended to continue with hydroxychloroquine throughout pregnancy and lactation [14, 69]. Azathioprine is a cytotoxic immunosuppressant used mainly in SLE and vasculitis. The fetus lacks the enzyme inosinatopyrophophorylase, which is required to convert azathioprine to its active metabolite 6-mercaptopurine, and therefore azathioprine is safe to use in pregnancy. Azathioprine can be used to control severe maternal disease, and doses of not more than 2 mg/kg per day are associated with few side effects [64].

Treatment and prevention of flares

Provided that conception occurs during remission, the risk of flares is low. The patient's condition should be kept stable on medication that can be continued throughout pregnancy, such as prednisolone, hydroxychloroquine, sulphasalazine, and azathioprine. If these drugs are stopped, there is an increased risk of flare [14, 69, 70].

Mild flares of lupus, vasculitis, or arthritis are usually treated with low-dose prednisolone (less than 15 mg per day). Higher doses or intravenous pulse methylpredniso-lone is used for severe flares. Non-teratogenic medication such as azathioprine, ciclosporin, or tacrolimus may be used. Cyclophosphamide and mycophenolate mofetil are occasionally used when all other options have been exhausted in the third trimester [11, 38, 39].

Management of recurrent pregnancy losses

Managing recurrent fetal losses depends on understanding the mechanism(s) underlying fetal loss. Three specific causes have been identified: disease activity (which is controlled as discussed above), maternal complications such as pre-eclampsia, or thrombosis. Thrombosis is most commonly associated with anti-phospholipid antibodies, and treatment occurs in one of two ways. The first is the use of antiplatelet/anticoagulant therapy, mainly aspirin and heparin. In the literature, there is much debate about the correct regime, and optimal doses have not been agreed upon. The current recommended guideline for women who have recurrent miscarriages is combination therapy of low-dose aspirin with low-molecular-weight heparin [64, 71, 72]. A randomized, controlled trial found no difference between giving aspirin only versus giving aspirin and heparin [73]. However, in that trial (as in a number of studies), not all patients had confirmed APS according to the Sydney criteria, making results dicult to interpret [16].

Treatment and prevention of hypertension{

Non-teratogenic anti-hypertensives should be taken before and during pregnancy. Labetalol, nifedipine, methyldopa, and hydralazine are used to control hyper-tension. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are contraindicated because of teratogenicity. They are the mainstay of treatment in renal crisis of SSc and may be used after appropriate discussion with the mother if hypertension is life-threatening [36]. Aspirin may reduce pre-eclampsia and prematurity. Many centers use it in high-risk pregnancies, including lupus and other systemic autoimmune diseases, to reduce the risk of pre-eclampsia and thrombosis [74, 75]. If pre-eclampsia is severe or progresses to eclampsia, delivery is the definitive treatment.

Treatment of esophageal reflux and dyspepsia

Dyspepsia is a common symptom in pregnant women and can be worsened by aspirin, non-steroidal anti-inflammatory drugs, and corticosteroids. Antacids such as gaviscon are rarely sufficient. Ranitidine, a histamine-2-antagonist, is used at doses of between 150 and 600 mg daily, especially in patients with SSc [76, 77]. There is less experience with proton pump inhibitors such as omeprazople, but they are probably safe in pregnancy [76, 78].

Delivery

Women with chronic disease generally want to have a 'natural' delivery like healthy women. With effective pre-pregnancy planning and joint care, vaginal delivery should be possible; cesarean delivery is reserved for obstetric emergencies, those with a history of cesarean section who do not want a trial of vaginal delivery, and women with severe hip disease. However, to reduce the risk of stillbirth in patients with APS or active disease, induction may be advisable at 38 to 39 weeks. Detailed plans for delivery should be made by a multi-disciplinary team that includes the obstetrician, anesthetist, and relevant physicians at 36 weeks of gestation or earlier in patients with complications. Owing to the risk of placental insufficiency in SLE, APS, SSc, and vasculitis, babies need to be monitored by growth scans every 4 weeks throughout pregnancy and closely monitored during delivery for any signs of fetal distress. Disease-specific considerations for anesthesia are listed in Table 3.

Table 3 Disease-specific complications that may affect use of analgesia and anesthesia

Epidural can be offered for routine vaginal deliveries. For cesarean section, neuroaxial anesthetic can be performed; general anesthetic is reserved for obstetric emergencies (for example, placental abruption, uterine rupture, prolapsed umbilical cord, or fetal distress). The last dose of heparin should be given 12 hours before the epidural will be administered, and the first dose after delivery should be 12 hours later. Aspirin may be given up until the time of delivery and is compatible with spinal and epidural anesthesia, although practice still varies among centers [79].

Breastfeeding

Breastfeeding has multiple health benefits for both the mother and child (Table 4) [80]. Table 5 summarizes recommendations for treatment during lactation [49, 63–66]. It is widely agreed that prednisolone, sulphasalazine, and hydroxychloroquine are acceptable [64, 69, 81]. Azathioprine use during lactation remains more controversial [64, 81] but has been used by us and others without obvious harm to the infant, as levels of the active metabolites are rare in breast milk and undetectable in the baby [64, 82, 83].

Table 4 Benefits of breastfeeding
Table 5 Commonly used anti-rheumatic drugs and their use during breastfeeding

Conclusions

With careful planning, most women with inflammatory rheumatological diseases can have successful pregnancies (Table 6). It is important that conception occur when the disease has been inactive for at least 6 months and while the mother is taking non-teratogenic drugs. The mother and fetus require regular monitoring throughout pregnancy so that any complications can be detected early and managed appropriately. Combined care involving obstetricians, rheumatologists, other relevant physicians, and anesthetists will promote the best outcomes for mother and baby.

Table 6 Key points in the management of patients with rheumatological diseases in pregnancy

Abbreviations

APS:

antiphospholipid syndrome

BD:

Behçet disease

CHB:

complete heart block

HELLP:

hemolysis: elevated liver enzymes: and low platelets

IUGR:

intrauterine growth restriction

IVIG:

intravenous immunoglobulin

PAN:

polyarteritis nodosa

PIH:

pregnancy-induced hypertension

RA:

rheumatoid arthritis

SLE:

systemic lupus erythematosus

SSc:

systemic sclerosis

TA:

Takayasu arteritis

WG:

Wegener granulomatosis.

References

  1. Vinet E, Pineau C, Gordon C, Clarke AE, Bernatsky S: Systemic lupus erythematosus in women: impact on family size. Arthritis Rheum. 2008, 59: 1656-1660. 10.1002/art.24203.

    Article  PubMed  Google Scholar 

  2. Ekblom-Kullberg S, Kautiainen H, Alha P, Helve T, Leirisalo-Repo M, Julkunen H: Reproductive health in women with systemic lupus erythematosus compared to population controls. Scand J Rheumatol. 2009, 38: 375-380. 10.1080/03009740902763099.

    Article  CAS  PubMed  Google Scholar 

  3. Costa M, Colia D: Treating infertility in autoimmune patients. Rheumatology (Oxford). 2008, 47 (Suppl 3): iii38-iii41. 10.1093/rheumatology/ken156.

    Google Scholar 

  4. Boumpas DT, Austin HA, Vaughan EM, Yarboro CH, Klippel JH, Balow JE: Risk for sustained amenorrhea in patients with systemic lupus erythematosus receiving intermittent pulse cyclophosphamide therapy. Ann Intern Med. 1993, 119: 366-369.

    Article  CAS  PubMed  Google Scholar 

  5. Huong DL, Amoura Z, Duhaut P, Sbai A, Costedoat N, Wechsler B, Piette JC: Risk of ovarian failure and fertility after intravenous cyclophosphamide. A study in 84 patients. J Rheumatol. 2002, 29: 2571-2576.

    CAS  PubMed  Google Scholar 

  6. Appenzeller S, Blatyta PF, Costallat LT: Ovarian failure in SLE patients using pulse cyclophosphamide: comparison of different regimes. Rheumatol Int. 2008, 28: 567-571. 10.1007/s00296-007-0478-3.

    Article  CAS  PubMed  Google Scholar 

  7. Elizur SE, Chian RC, Pineau CA, Son WY, Holzer HE, Huang JY, Gidoni Y, Levin D, Demirtas E, Tan SL: Fertility preservation treatment for young women with autoimmune diseases facing treatment with gonadotoxic agents. Rheumatology (Oxford). 2008, 47: 1506-1509. 10.1093/rheumatology/ken293.

    Article  CAS  Google Scholar 

  8. Huong DL, Wechsler B, Vauthier-Brouzes D, Duhaut P, Costedoat N, Lefebvre G, Piette JC: Importance of planning ovulation induction therapy in systemic lupus erythematosus and antiphospholipid syndrome: a single center retrospective study of 21 cases and 114 cycles. Semin Arthritis Rheum. 2002, 32: 174-188. 10.1053/sarh.2002.37212.

    Article  PubMed  Google Scholar 

  9. Surita FG, Parpinelli MA, Yonehara E, Krupa F, Cecatti JG: Systemic lupus erythematosus and pregnancy: clinical evolution, maternal and perinatal outcomes and placental findings. Sao Paulo Med J. 2007, 125: 91-95. 10.1590/S1516-31802007000200005.

    Article  PubMed  Google Scholar 

  10. Phadungkiatwattana P, Sirivatanapa P, Tongsong T: Outcomes of pregnancies complicated by systemic lupus erythematosus (SLE). J Med Assoc Thai. 2007, 90: 1981-1985.

    PubMed  Google Scholar 

  11. Clowse ME: Lupus activity in pregnancy. Rheum Dis Clin North Am. 2007, 33: 237-252. 10.1016/j.rdc.2007.01.002. v

    Article  PubMed Central  PubMed  Google Scholar 

  12. Gordon C: Pregnancy and autoimmune diseases. Best Pract Res Clin Rheumatol. 2004, 18: 359-379.

    Article  CAS  PubMed  Google Scholar 

  13. Clowse ME, Jamison M, Myers E, James AH: A national study of the complications of lupus in pregnancy. Am J Obstet Gynecol. 2008, 199: 127-10.1016/j.ajog.2008.03.012. e1-6

    PubMed Central  PubMed  Google Scholar 

  14. Mitchell K, Kaul M, Clowse ME: The management of rheumatic diseases in pregnancy. Scand J Rheumatol. 2010, 39: 99-108. 10.3109/03009740903449313.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Chakravarty EF, Nelson L, Krishnan E: Obstetric hospitalizations in the United States for women with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 2006, 54: 899-907. 10.1002/art.21663.

    Article  PubMed  Google Scholar 

  16. Rand JH: The antiphospholipid syndrome. Hematology Am Soc Hematol Educ Program. 2007, 136-142.

    Google Scholar 

  17. Abrahams VM: Mechanisms of antiphospholipid antibody-associated pregnancy complications. Thromb Res. 2009, 124: 521-525. 10.1016/j.thromres.2009.07.011.

    Article  CAS  PubMed  Google Scholar 

  18. McMillan E, Martin WL, Waugh J, Rushton I, Lewis M, Clutton-Brock T, Townend JN, Kilby MD, Gordon C: Management of pregnancy in women with pulmonary hypertension secondary to SLE and anti-phospholipid syndrome. Lupus. 2002, 11: 392-398. 10.1191/0961203302lu216xx.

    Article  CAS  PubMed  Google Scholar 

  19. Prabu A, Patel K, Yee CS, Nightingale P, Situnayake RD, Thickett DR, Townend JN, Gordon C: Prevalence and risk factors for pulmonary arterial hypertension in patients with lupus. Rheumatology (Oxford). 2009, 48: 1506-1511. 10.1093/rheumatology/kep203.

    Article  Google Scholar 

  20. Yamada H, Atsumi T, Kobashi G, Ota C, Kato EH, Tsuruga N, Ohta K, Yasuda S, Koike T, Minakami H: Antiphospholipid antibodies increase the risk of pregnancy-induced hypertension and adverse pregnancy outcomes. J Reprod Immunol. 2009, 79: 188-195. 10.1016/j.jri.2008.11.001.

    Article  CAS  PubMed  Google Scholar 

  21. Le Thi Thuong D, Tieulié N, Costedoat N, Andreu MR, Wechsler B, Vauthier-Brouzes D, Aumaître O, Piette JC: The HELLP syndrome in the antiphospholipid syndrome: retrospective study of 16 cases in 15 women. Ann Rheum Dis. 2005, 64: 273-278. 10.1136/ard.2003.019000.

    Article  CAS  PubMed  Google Scholar 

  22. Tsirigotis P, Mantzios G, Pappa V, Girkas K, Salamalekis G, Koutras A, Giannopoulou V, Spirou K, Balanika A, Papageorgiou S, Travlou A, Dervenoulas J: Antiphospholipid syndrome: a predisposing factor for early onset HELLP syndrome. Rheumatol Int. 2007, 28: 171-174. 10.1007/s00296-007-0386-6.

    Article  PubMed  Google Scholar 

  23. Bornstein E, Barnhard Y, Atkin R, Divon MY: HELLP syndrome: a rare, early presentation at 17 weeks of gestation. Obstet Gynecol. 2007, 110: 525-527. 10.1097/01.AOG.0000268512.26170.ad.

    Article  PubMed  Google Scholar 

  24. Marnach M, VanWinter J, Watson W: Myocarditis: an unusual cause of postpartum fever in pregnancy complicated by antiphospholipid syndrome. Am J Perinatol. 2007, 24: 405-408. 10.1055/s-2007-984406.

    Article  PubMed  Google Scholar 

  25. de Man YA, Dolhain RJ, van de Geijn FE, Willemsen SP, Hazes JM: Disease activity of rheumatoid arthritis during pregnancy: results from a nationwide prospective study. Arthritis Rheum. 2008, 59: 1241-1248. 10.1002/art.24003.

    Article  PubMed  Google Scholar 

  26. Keeling SO, Oswald AE: Pregnancy and rheumatic disease: 'by the book' or 'by the doc'. Clin Rheumatol. 2009, 28: 1-9. 10.1007/s10067-008-1031-9.

    Article  PubMed  Google Scholar 

  27. Ostensen M, Villiger PM: The remission of rheumatoid arthritis during pregnancy. Semin Immunopathol. 2007, 29: 185-191. 10.1007/s00281-007-0072-5.

    Article  PubMed  Google Scholar 

  28. Forger F, Marcoli N, Gadola S, Moller B, Villiger PM, Ostensen M: Pregnancy induces numerical and functional changes of CD4+CD25 high regulatory T cells in patients with rheumatoid arthritis. Ann Rheum Dis. 2008, 67: 984-990. 10.1136/ard.2007.075283.

    Article  CAS  PubMed  Google Scholar 

  29. Haupl T, Ostensen M, Grutzkau A, Radbruch A, Burmester GR, Villiger PM: Reactivation of rheumatoid arthritis after pregnancy: increased phagocyte and recurring lymphocyte gene activity. Arthritis Rheum. 2008, 58: 2981-2992. 10.1002/art.23907.

    Article  PubMed  Google Scholar 

  30. Haupl T, Ostensen M, Grutzkau A, Burmester GR, Villiger PM: Interaction between rheumatoid arthritis and pregnancy: correlation of molecular data with clinical disease activity measures. Rheumatology (Oxford). 2008, 47 (Suppl 3): iii19-iii22. 10.1093/rheumatology/ken157.

    Google Scholar 

  31. Forger F, Ostensen M: Is IgG galactosylation the relevant factor for pregnancy-induced remission of rheumatoid arthritis?. Arthritis Res Ther. 2010, 12: 108-10.1186/ar2919.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Forger F, Ostensen M, Schumacher A, Villiger PM: Impact of pregnancy on health related quality of life evaluated prospectively in pregnant women with rheumatic diseases by the SF-36 health survey. Ann Rheum Dis. 2005, 64: 1494-1499. 10.1136/ard.2004.033019.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Gran JT, Ostensen M: Spondyloarthritides in females. Baillieres Clin Rheumatol. 1998, 12: 695-715. 10.1016/S0950-3579(98)80045-9.

    Article  CAS  PubMed  Google Scholar 

  34. Nelson JL, Ostensen M: Pregnancy and rheumatoid arthritis. Rheum Dis Clin North Am. 1997, 23: 195-212. 10.1016/S0889-857X(05)70323-9.

    Article  CAS  PubMed  Google Scholar 

  35. Miniati I, Guiducci S, Mecacci F, Mello G, Matucci-Cerinic M: Pregnancy in systemic sclerosis. Rheumatology (Oxford). 2008, 47 (Suppl 3): iii16-iii18. 10.1093/rheumatology/ken174.

    Google Scholar 

  36. Steen VD: Pregnancy in scleroderma. Rheum Dis Clin North Am. 2007, 33: 345-358. 10.1016/j.rdc.2007.03.001. vii

    Article  PubMed  Google Scholar 

  37. Harper L, Savage CO: ANCA-associated renal vasculitis at the end of the twentieth century--a disease of older patients. Rheumatology (Oxford). 2005, 44: 495-501. 10.1093/rheumatology/keh522.

    Article  CAS  Google Scholar 

  38. Koukoura O, Mantas N, Linardakis H, Hajiioannou J, Sifakis S: Successful term pregnancy in a patient with Wegener's granulomatosis: case report and literature review. Fertil Steril. 2008, 89: 457-10.1016/j.fertnstert.2007.03.054. e1-5

    Article  PubMed  Google Scholar 

  39. Doria A, Bajocchi G, Tonon M, Salvarani C: Pre-pregnancy counselling of patients with vasculitis. Rheumatology (Oxford). 2008, 47 (Suppl 3): iii13-iii15. 10.1093/rheumatology/ken152.

    Google Scholar 

  40. Kim SY, Linton JM, Kolasinski SL: Successful treatment of new onset Wegener's granulomatosis with IVIG (intravenous immunoglobulin) during pregnancy: a case report. Mod Rheumatol. 2008, 18: 177-180. 10.1007/s10165-008-0020-9.

    Article  PubMed  Google Scholar 

  41. Alfhaily F, Watts R, Leather A: Wegener's granulomatosis occurring de novo during pregnancy. Clin Exp Rheumatol. 2009, 27 (1 Suppl 52): S86-S88.

    CAS  PubMed  Google Scholar 

  42. Owada K, Katoh T, Asano K, Watanabe K, Shigetomi S, Watanabe T: Successful pregnancy complicated by microscopic polyarteritis nodosa. Clin Nephrol. 2005, 63: 500-502.

    Article  CAS  PubMed  Google Scholar 

  43. Corradi D, Maestri R, Facchetti F: Postpartum Churg-Strauss syndrome with severe cardiac involvement: description of a case and review of the literature. Clin Rheumatol. 2009, 28: 739-743. 10.1007/s10067-009-1143-x.

    Article  PubMed  Google Scholar 

  44. Sharma BK, Jain S, Vasishta K: Outcome of pregnancy in Takayasu arteritis. Int J Cardiol. 2000, 75 (Suppl 1): S159-S162. 10.1016/S0167-5273(00)00182-0.

    Article  PubMed  Google Scholar 

  45. Jadaon J, Shushan A, Ezra Y, Sela HY, Ozcan C, Rojansky N: Behcet's disease and pregnancy. Acta Obstet Gynecol Scand. 2005, 84: 939-944.

    PubMed  Google Scholar 

  46. Kale A, Akyildiz L, Akdeniz N, Kale E: Pregnancy complicated by superior vena cava thrombosis and pulmonary embolism in a patient with Behcet disease and the use of heparin for treatment. Saudi Med J. 2006, 27: 95-97.

    PubMed  Google Scholar 

  47. Suri V, Aggarwal N, Keepanasseril A, Chopra S, Vijayvergiya R, Jain S: Pregnancy and Takayasu arteritis: a single centre experience from North India. J Obstet Gynaecol Res. 2010, 36: 519-524. 10.1111/j.1447-0756.2010.01226.x.

    Article  PubMed  Google Scholar 

  48. Saar P, Hermann W, Muller-Ladner U: Connective tissue diseases and pregnancy. Rheumatology (Oxford). 2006, 45 (Suppl 3): iii30-iii32. 10.1093/rheumatology/kel288.

    Google Scholar 

  49. Levy RA, Jesus GR, Jesus NR: Obstetric antiphospholipid syndrome: still a challenge. Lupus. 2010, 19: 457-459. 10.1177/0961203309361484.

    Article  CAS  PubMed  Google Scholar 

  50. Crane J, Armson A, Brunner M, De La Ronde S, Farine D, Keenan-Lindsay L, Leduc L, Schneider C, Van Aerde J, Executive Committee of the Society of Obstetricians and Gynaecologists of Canada: Antenatal corticosteroid therapy for fetal maturation. J Obstet Gynaecol Can. 2003, 25: 45-52.

    PubMed  Google Scholar 

  51. Cimaz R, Spence DL, Hornberger L, Silverman ED: Incidence and spectrum of neonatal lupus erythematosus: a prospective study of infants born to mothers with anti-Ro autoantibodies. J Pediatr. 2003, 142: 678-683. 10.1067/mpd.2003.233.

    Article  PubMed  Google Scholar 

  52. Friedman DM, Rupel A, Buyon JP: Epidemiology, etiology, detection, and treatment of autoantibody-associated congenital heart block in neonatal lupus. Curr Rheumatol Rep. 2007, 9: 101-108. 10.1007/s11926-007-0003-4.

    Article  CAS  PubMed  Google Scholar 

  53. Brucato A, Cimaz R, Caporali R, Ramoni V, Buyon J: Pregnancy outcomes in patients with autoimmune diseases and anti-Ro/SSA antibodies. Clin Rev Allergy Immunol. 2011, 40: 27-41. 10.1007/s12016-009-8190-6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Buyon JP, Clancy RM, Friedman DM: Cardiac manifestations of neonatal lupus erythematosus: guidelines to management, integrating clues from the bench and bedside. Nat Clin Pract Rheumatol. 2009, 5: 139-148. 10.1038/ncprheum1018.

    Article  PubMed  Google Scholar 

  55. Chunharas A, Nuntnarumit P, Hongeng S, Chaunsumrit A: Neonatal lupus erythematosus: clinical manifestations and management. J Med Assoc Thai. 2002, 85 (Suppl 4): S1302-S1308.

    PubMed  Google Scholar 

  56. Pisoni CN, Brucato A, Ruffatti A, Espinosa G, Cervera R, Belmonte-Serrano M, Sánchez-Román J, García-Hernández FG, Tincani A, Bertero MT, Doria A, Hughes GR, Khamashta MA: Failure of intravenous immunoglobulin to prevent congenital heart block: findings of a multicenter, prospective, observational study. Arthritis Rheum. 2010, 62: 1147-1152. 10.1002/art.27350.

    Article  CAS  PubMed  Google Scholar 

  57. Chou AK, Hsieh SC, Su YN, Jeng SF, Chen CY, Chou HC, Tsao PN, Hsieh WS: Neonatal and pregnancy outcome in primary antiphospholipid syndrome: a 10-year experience in one medical center. Pediatr Neonatol. 2009, 50: 143-146. 10.1016/S1875-9572(09)60052-8.

    Article  PubMed  Google Scholar 

  58. Branch DW, Porter TF, Paidas MJ, Belfort MA, Gonik B: Obstetric uses of intravenous immunoglobulin: successes, failures, and promises. J Allergy Clin Immunol. 2001, 108 (4 Suppl): S133-S138. 10.1067/mai.2001.117821.

    Article  CAS  PubMed  Google Scholar 

  59. Petri M, Kim MY, Kalunian KC, Grossman J, Hahn BH, Sammaritano LR, Lockshin M, Merrill JT, Belmont HM, Askanase AD, McCune WJ, Hearth-Holmes M, Dooley MA, Von Feldt J, Friedman A, Tan M, Davis J, Cronin M, Diamond B, Mackay M, Sigler L, Fillius M, Rupel A, Licciardi F, Buyon JP, OC-SELENA Trial: Combined oral contraceptives in women with systemic lupus erythematosus. N Engl J Med. 2005, 353: 2550-2558. 10.1056/NEJMoa051135.

    Article  CAS  PubMed  Google Scholar 

  60. Sánchez-Guerrero J, Uribe AG, Jiménez-Santana L, Mestanza-Peralta M, Lara-Reyes P, Seuc AH, Cravioto MD: A trial of contraceptive methods in women with systemic lupus erythematosus. N Engl J Med. 2005, 353: 2539-2549. 10.1056/NEJMoa050817.

    Article  PubMed  Google Scholar 

  61. Sammaritano LR: Therapy insight: guidelines for selection of contraception in women with rheumatic diseases. Nat Clin Pract Rheumatol. 2007, 3: 273-281. 10.1038/ncprheum0484.

    Article  PubMed  Google Scholar 

  62. De-Regil LM, Fernandez-Gaxiola AC, Dowswell T, Pena-Rosas JP: Effects and safety of periconceptional folate supplementation for preventing birth defects. Cochrane Database Syst Rev. 2010, CD007950-10

  63. Janssen NM, Genta MS: The effects of immunosuppressive and anti-inflammatory medications on fertility, pregnancy, and lactation. Arch Intern Med. 2000, 160: 610-619. 10.1001/archinte.160.5.610.

    Article  CAS  PubMed  Google Scholar 

  64. Østensen M, Khamashta M, Lockshin M, Parke A, Brucato A, Carp H, Doria A, Rai R, Meroni P, Cetin I, Derksen R, Branch W, Motta M, Gordon C, Ruiz-Irastorza G, Spinillo A, Friedman D, Cimaz R, Czeizel A, Piette JC, Cervera R, Levy RA, Clementi M, De Carolis S, Petri M, Shoenfeld Y, Faden D, Valesini G, Tincani A: Anti-inflammatory and immunosuppressive drugs and reproduction. Arthritis Res Ther. 2006, 8: 209-10.1186/ar1957.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Vinet E, Pineau C, Gordon C, Clarke AE, Bernatsky S: Biologic therapy and pregnancy outcomes in women with rheumatic diseases. Arthritis Rheum. 2009, 61: 587-592. 10.1002/art.24462.

    Article  CAS  PubMed  Google Scholar 

  66. Vento M, Perez AA, Ledo A, Boso V, Carey JC: Mycophenolate mofetil during pregnancy: some words of caution. Pediatrics. 2008, 122: 184-185. 10.1542/peds.2008-0348.

    Article  PubMed  Google Scholar 

  67. Minozzi S, Amato L, Vecchi S, Davoli M: Maintenance agonist treatments for opiate dependent pregnant women. Cochrane Database Syst Rev. 2008, CD006318-2

  68. Brucato A: Prevention of congenital heart block in children of SSA-positive mothers. Rheumatology (Oxford). 2008, 47 (Suppl 3): iii35-iii37. 10.1093/rheumatology/ken153.

    Google Scholar 

  69. Costedoat-Chalumeau N, Amoura Z, Huong DL, Lechat P, Piette JC: Safety of hydroxychloroquine in pregnant patients with connective tissue diseases. Review of the literature. Autoimmun Rev. 2005, 4: 111-115. 10.1016/j.autrev.2004.11.009.

    Article  CAS  PubMed  Google Scholar 

  70. Gayed M, Gordon C: Pregnancy and rheumatic diseases. Rheumatology (Oxford). 2007, 46: 1634-1640. 10.1093/rheumatology/kem156.

    Article  CAS  Google Scholar 

  71. Tincani A, Branch W, Levy RA, Piette JC, Carp H, Rai RS, Khamashta M, Shoenfeld Y: Treatment of pregnant patients with antiphospholipid syndrome. Lupus. 2003, 12: 524-529. 10.1191/0961203303lu393oa.

    Article  CAS  PubMed  Google Scholar 

  72. Branch DW, Silver RM, Porter TF: Obstetric antiphospholipid syndrome: current uncertainties should guide our way. Lupus. 2010, 19: 446-452. 10.1177/0961203310361490.

    Article  CAS  PubMed  Google Scholar 

  73. Laskin CA, Spitzer KA, Clark CA, Crowther MR, Ginsberg JS, Hawker GA, Kingdom JC, Barrett J, Gent M: Low molecular weight heparin and aspirin for recurrent pregnancy loss: results from the randomized, controlled HepASA Trial. J Rheumatol. 2009, 36: 279-287. 10.3899/jrheum.080763.

    Article  CAS  PubMed  Google Scholar 

  74. Dekker G, Sibai B: Primary, secondary, and tertiary prevention of pre-eclampsia. Lancet. 2001, 357: 209-215. 10.1016/S0140-6736(00)03599-6.

    Article  CAS  PubMed  Google Scholar 

  75. Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R: Pre-eclampsia. Lancet. 2010, 376: 631-644. 10.1016/S0140-6736(10)60279-6.

    Article  PubMed  Google Scholar 

  76. Ruigómez A, García Rodríguez LA, Cattaruzzi C, Troncon MG, Agostinis L, Wallander MA, Johansson S: Use of cimetidine, omeprazole, and ranitidine in pregnant women and pregnancy outcomes. Am J Epidemiol. 1999, 150: 476-481.

    Article  PubMed  Google Scholar 

  77. Matok I, Gorodischer R, Koren G, Sheiner E, Wiznitzer A, Uziel E, Levy A: The safety of H(2)-blockers use during pregnancy. J Clin Pharmacol. 2010, 50: 81-87. 10.1177/0091270009350483.

    Article  CAS  PubMed  Google Scholar 

  78. Gill SK, O'Brien L, Einarson TR, Koren G: The safety of proton pump inhibitors (PPIs) in pregnancy: a meta-analysis. Am J Gastroenterol. 2009, 104: 1541-1545. 10.1038/ajg.2009.122.

    Article  CAS  PubMed  Google Scholar 

  79. Wetzl RG: Anaesthesiological aspects of pregnancy in patients with rheumatic diseases. Lupus. 2004, 13: 699-702. 10.1191/0961203304lu2013oa.

    Article  CAS  PubMed  Google Scholar 

  80. Ip S, Chung M, Raman G, Chew P, Magula N, DeVine D, Trikalinos T, Lau J: Breastfeeding and maternal and infant health outcomes in developed countries. Evid Rep Technol Assess (Full Rep). 2007, 1-186. 153

  81. Ostensen M, Motta M: Therapy insight: the use of antirheumatic drugs during nursing. Nat Clin Pract Rheumatol. 2007, 3: 400-406. 10.1038/ncprheum0532.

    Article  PubMed  Google Scholar 

  82. Sau A, Clarke S, Bass J, Kaiser A, Marinaki A, Nelson-Piercy C: Azathioprine and breastfeeding: is it safe?. BJOG. 2007, 114: 498-501. 10.1111/j.1471-0528.2006.01232.x.

    Article  CAS  PubMed  Google Scholar 

  83. Moretti ME, Verjee Z, Ito S, Koren G: Breast-feeding during maternal use of azathioprine. Ann Pharmacother. 2006, 40: 2269-2272. 10.1345/aph.1H152.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Gordon.

Additional information

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, V., Gordon, C. Managing pregnancy in inflammatory rheumatological diseases. Arthritis Res Ther 13, 206 (2011). https://doi.org/10.1186/ar3227

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/ar3227

Keywords