Open Access Open Badges Research article

The involvement of interleukin-1 and interleukin-4 in the response of human annulus fibrosus cells to cyclic tensile strain: an altered mechanotransduction pathway with degeneration

Hamish TJ Gilbert, Judith A Hoyland, Anthony J Freemont and Sarah J Millward-Sadler*

Author Affiliations

Regenerative Medicine, School of Biomedicine, Faculty of Medical and Human Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PL, UK

For all author emails, please log on.

Arthritis Research & Therapy 2011, 13:R8  doi:10.1186/ar3229

Published: 28 January 2011



Recent evidence suggests that intervertebral disc (IVD) cells derived from degenerative tissue are unable to respond to physiologically relevant mechanical stimuli in the 'normal' anabolic manner, but instead respond by increasing matrix catabolism. Understanding the nature of the biological processes which allow disc cells to sense and respond to mechanical stimuli (a process termed 'mechanotransduction') is important to ascertain whether these signalling pathways differ with disease. The aim here was to investigate the involvement of interleukin (IL)-1 and IL-4 in the response of annulus fibrosus (AF) cells derived from nondegenerative and degenerative tissue to cyclic tensile strain to determine whether cytokine involvement differed with IVD degeneration.


AF cells were isolated from nondegenerative and degenerative human IVDs, expanded in monolayers and cyclically strained in the presence or absence of the cytokine inhibitors IL-1 receptor antagonist (IL-1Ra) or IL-4 receptor antibody (IL-4RAb) with 10% strain at 1.0 Hz for 20 minutes using a Flexcell strain device. Total RNA was extracted from the cells at time points of baseline control and 1 or 24 hours poststimulation. Quantitative real-time polymerase chain reaction was used to analyse the gene expression of matrix proteins (aggrecan and type I collagen) and enzymes (matrix metalloproteinase 3 (MMP3) and a disintegrin and metalloproteinase with a thrombospondin type 1 motif 4 (ADAMTS4)).


Expression of catabolic genes (MMP3 and ADAMTS4) decreased in AF cells derived from nondegenerative tissue in response to 1.0-Hz stimulation, and this decrease in gene expression was inhibited or increased following pretreatment of cells with IL-1Ra or IL-4RAb respectively. Treatment of AF cells derived from degenerative tissue with an identical stimulus (1.0-Hz) resulted in reduced anabolic gene expression (aggrecan and type I collagen), with IL-1Ra or IL-4RAb pretreatment having no effect.


Both IL-1 and IL-4 are involved in the response of AF cells derived from nondegenerative tissue to 1.0-Hz cyclic tensile strain. Interestingly, the altered response observed at 1.0-Hz in AF cells from degenerative tissue appears to be independent of either cytokine, suggesting an alternative mechanotransduction pathway in operation.