Open Access Highly Accessed Open Badges Research article

A regulatory effect of IL-21 on T follicular helper-like cell and B cell in rheumatoid arthritis

Rui Liu1, Qian Wu2, Dinglei Su1, Nan Che1, Haifeng Chen2, Linyu Geng2, Jinyun Chen2, Wanjun Chen3, Xia Li14* and Lingyun Sun1*

Author affiliations

1 Department of Immunology and Rheumatology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, PR China

2 Department of Immunology and Rheumatology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, PR China

3 Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA

4 Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, 116044, PR China

For all author emails, please log on.

Citation and License

Arthritis Research & Therapy 2012, 14:R255  doi:10.1186/ar4100

Published: 23 November 2012



Interleukin (IL)-21 is a member of type I cytokine family. Recent studies indicate that IL-21 can promote T follicular helper (Tfh) cell differentiation and survival, a specialized T cell subset which provides help for B cell. It can also regulate the activation, proliferation and differentiation of human B cell and immunoglobulin (Ig) production as well as isotype switching of plasma cell. Rheumatoid arthritis (RA) is characterized by auto-antibodies overproduction such as rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP) antibody, suggesting a pivotal role of Tfh cell and B cell in the pathogenesis of RA. This study aimed to investigate whether IL-21 had a regulatory effect on Tfh cell and B cell in RA.


Serum IL-21 concentrations were measured by ELISA. The correlations between serum IL-21 levels and clinical features of RA patients were analyzed by Spearman's rank test. The percentages of Tfh-like cells, IL-21 receptor (R) expression on Tfh-like cells and B cells in peripheral blood (PB) were analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMC) were stimulated by rIL-21 (100 ng/ml) in the presence or absence of anti-CD40 and/or anti-IgM, and changes of IL-21R, activation-associated surface markers (CD25, CD69 and CD40), the proliferation, apoptosis and differentiation of B cells were analyzed by flow cytometry. Production of IgG and IgM in the culture supernatants was determined by ELISA.


The results showed that the serum IL-21 levels in RA patients were significantly higher than that of healthy controls (HC). IL-21 concentrations were positively correlated with 28-joint count disease activity score (DAS28) and anti-CCP antibody in RA patients with high IL-21 levels. Furthermore, the frequencies of peripheral CXCR5+PD-1+CD4+ Tfh-like cells markedly increased in RA patients and the percentages of Tfh-like cells were positively correlated with DAS28 and anti-CCP antibody levels. Moreover, elevated IL-21 levels were also correlated with the frequencies of Tfh-like cells. IL-21R expression on both Tfh-like cells and B cells were significantly enhanced in RA patients. In cultures vitro, exogenous IL-21 upregulated IL-21R expression and activation-associated surface markers on B cells and promoted more B cell proliferation in RA than in HC. This IL-21-mediated effect could be reversed by IL-21R-specific neutralizing antibody. Importantly, IL-21 promoted more differentiation of B cell into plasmablast and higher levels of IgG and IgM production in RA than in HC.


Increased serum IL-21 levels in RA patients correlate with DAS28, anti-CCP antibody and frequencies of Tfh-like cells. IL-21 supports B cell activation, proliferation and antibody secretion via IL-21R pathway. Thus, IL-21 may be involved in the pathogenesis of RA and antagonizing IL-21 could be a novel strategy for the therapy of RA.