Email updates

Keep up to date with the latest news and content from Arthritis Research & Therapy and BioMed Central.

This article is part of the supplement: 21st European Workshop for Rheumatology Research

Open Badges Meeting abstract

Chromosome segregation one hundred years after Mendel's rediscovery

K Nasmyth

  • Correspondence: K Nasmyth

Author Affiliations

IMP, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria

Arthritis Res 2001, 3(Suppl A):L007  doi:10.1186/ar155

The electronic version of this article is the complete one and can be found online at:

Received:15 January 2001
Published:26 January 2001

© 2001 2001 BioMed Central Ltd

Meeting abstract

In eukaryotic cells, replicated DNA strands remain physically connected until their segregation to opposite poles of the cell during anaphase. This "sister chromatid cohesion" is essential for the alignment of chromosomes on the mitotic spindle during metaphase. Cohesion depends on a multisubunit protein complex called cohesin, which possibly forms the physical bridges that connect sisters. Proteolytic cleavage of cohesin's Scc1 subunit at the metaphase to anaphase transition is essential for sister chromatid separation and depends on a conserved protein called separin. We show here that separin is a cysteine protease related to caspases and that it alone can cleave Scc1 in vitro. By replacing one of Scc1's cleavage sites by that for a different site specific protease, we show that cleavage of Scc1 in metaphase arrested cells is sufficient to trigger the separation of sister chromatids and their segregation to opposite cell poles.