
Introduction
‘Juvenile rheumatoid arthritis’ (JRA), a term for the most
prevalent form of arthritis in children, is applied to a family
of illnesses characterized by chronic inflammation and
hypertrophy of the synovial membranes. The term over-
laps, but is not completely synonymous, with the family of
illnesses referred to as juvenile chronic arthritis and/or
juvenile idiopathic arthritis in Europe. We [1] and others
[2] have proposed that the pathogenesis of rheumatoid
disease in adults and children involves complex inter-
actions between innate and adaptive immunity. This com-

plexity lies at the core of the difficulty of unraveling
disease pathogenesis. Both innate and adaptive immune
systems use multiple cell types, a vast array of cell-
surface and secreted proteins, and interconnected net-
works of positive and negative feedback [3]. Furthermore,
while separable in thought, the innate and adaptive wings
of the immune system are functionally intersected [4], and
pathologic events occurring at these intersecting points
are likely to be highly relevant to our understanding of
pathogenesis of adult and childhood forms of chronic
arthritis [5].

DFA = discriminant function analysis; ELISA = enzyme-linked immunosorbent assay; GM-CSF = granulocyte/macrophage-colony-stimulating factor;
HV = hypervariable; ICAM-1 = intercellular adhesion molecule-1; IFN = interferon; JRA = juvenile rheumatoid arthritis; SD = standard deviation; TGF =
transforming growth factor; TNF = tumor necrosis factor.
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Abstract

Juvenile rheumatoid arthritis (JRA) has a complex, poorly
characterized pathophysiology. Modeling of transcriptosome
behavior in pathologic specimens using microarrays allows
molecular dissection of complex autoimmune diseases.
However, conventional analyses rely on identifying statistically
significant differences in gene expression distributions between
patients and controls. Since the principal aspects of disease
pathophysiology vary significantly among patients, these
analyses are biased. Genes with highly variable expression,
those most likely to regulate and affect pathologic processes,
are excluded from selection, as their distribution among healthy
and affected individuals may overlap significantly. Here we
describe a novel method for analyzing microarray data that
assesses statistically significant changes in gene behavior at the
population level. This method was applied to expression profiles
of peripheral blood leukocytes from a group of children with

polyarticular JRA and healthy control subjects. Results from this
method are compared with those from a conventional analysis
of differential gene expression and shown to identify discrete
subsets of functionally related genes relevant to disease
pathophysiology. These results reveal the complex action of the
innate and adaptive immune responses in patients and
specifically underscore the role of IFN-γ in disease
pathophysiology. Discriminant function analysis of data from a
cohort of patients treated with conventional therapy identified
additional subsets of functionally related genes; the results may
predict treatment outcomes. While data from only 9 patients
and 12 healthy controls was used, this preliminary investigation
of the inflammatory genomics of JRA illustrates the significant
potential of utilizing complementary sets of bioinformatics tools
to maximize the clinical relevance of microarray data from
patients with autoimmune disease, even in small cohorts.
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Polyarticular JRA is a distinct clinical subtype character-
ized by inflammation and synovial proliferation in multiple
joints (four or more), including the small joints of the hands
[6]. This subtype of JRA may be severe, because of both
its multiple joint involvement and its capacity to progress
rapidly over time. Although clinically distinct, polyarticular
JRA is not homogeneous, and patients vary in disease
manifestations, age of onset, prognosis, and therapeutic
response. These differences very likely reflect a spectrum
of variation in the nature of the immune and inflammatory
attack that can occur in this disease [1].

Gene expression profiling using microarrays provides a
highly parallel assay for assessing molecular pathophysiol-
ogy in a comprehensive manner. It holds the potential to
refine our understanding of complex disease states.
However, microarray data analysis is commonly limited to
a simple assessment of a single behavioral change in
gene expression, genes that are up- or down-regulated on
average among distinct populations. This approach has
been used to identify groups of genes that are prognosti-
cally or diagnostically relevant, but the predictive power of
these gene sets for autoimmune disease has proved
limited [7–9]. Changes in gene behavior among individu-
als in diseased populations are complex and may reflect
both the unique genetic makeup of individuals and distinct
subclasses of disease.

In this preliminary investigation of the inflammatory
genomics of JRA, we report the application of a novel
bioinformatics approach to microarray data for the identifi-
cation of genes whose expression behavior is modulated
by disease in a complex manner at the population level.
Accordingly, genes whose expression within a population
changes from stable to variable are identified. This
measure of gene behavior emulates at the molecular level
the loss of homeostasis characteristic of disease patho-
genesis. The method identified a significant number of
genes relevant to the pathophysiology of polyarticular JRA
distinct from those identified by standard differential gene
expression analysis. In addition, we followed a subset of
patients during therapy to characterize temporally depen-
dent changes in gene expression. Using discriminant func-
tion analysis (DFA) to analyze this cohort, we identified
gene expression changes characteristic of therapeutic
response approximately one month before the time at
which full clinical response occurred. A clinical assay
could be created from this data that may predict soon
after initiation of therapy which patients will respond and
which will not. The predictive potential of this data is pred-
icated on the fact that within 2 to 4 weeks after the start of
therapy, gene expression in responsive patients, as mea-
sured by DFA, became more like that in healthy controls,
while gene expression in nonresponsive patients became
less like that in healthy controls. Moreover, the genes iden-
tified by DFA to be predictive of therapeutic response

were, for the most part, known regulators and effectors of
the immune system. Taken together, these data suggest
that successful therapy was able to reset immune
response homeostasis to a significant extent in this cohort.

Materials and methods
Patients, patient selection, preparation of clinical
specimens
We studied nine children newly diagnosed with polyarticu-
lar JRA. Diagnosis was based on accepted and validated
criteria endorsed by the American College of Rheumatol-
ogy [10]. Children were excluded if they had been treated
with corticosteroids or methotrexate, or if they had
received therapeutic doses of nonsteroidal anti-inflamma-
tory drugs for more than 3 weeks before the study.
Patients with active disease ranged in age from 4 to
15 years and presented with proliferative synovitis of multi-
ple joints and erythrocyte sedimentation rates ranging
from 35 to 100 mm/hour. Control subjects (n = 12) were
laboratory volunteers under 25 years of age. Leukocyte
buffy coat preparations were made from peripheral blood
and total RNA extracted with Trizol reagent (Invitrogen,
Carlsbad, CA, USA). Fluorescent labeling of cDNA was
undertaken using the Micromax TSA-labeling kit
(PerkinElmer Life Sciences, Boston, MA, USA). Labeled
cDNAs were hybridized with PerkinElmer Micromax human
cDNA microarray containing 2,382 human genes, and
arrays were scanned using an Affymetrix 428 Array
Scanner (Affymetrix, Durham, NC, USA).

Five of these nine patients were followed up longitudinally
(for 6–12 months) from the onset of therapy as they either
responded or failed to respond to therapy. In this portion
of the study, disease severity was scored for the degree of
synovitis using a linear scoring system used previously in
our laboratory [11]. This system is based on criteria used
in clinical trials in JRA [12]. For purposes of comparison
and analysis, untreated children were categorized as
having active disease. Children treated for more than 6
weeks who had a ≥ 30% reduction in their disease sever-
ity score were categorized as having had a partial
response to therapy, while children with < 30% reduction
in their severity scores were categorized as having acute,
persistent disease. Children were categorized as being
fully responsive to therapy if they showed synovial thicken-
ing in ≤ 3 joints, without warmth or tenderness in those
joints and with no more than 30 minutes’ morning stiffness
per day. These criteria for full responsiveness have been
validated in previous studies we have published examining
markers of inflammation in JRA [13,14]. The patients’ char-
acteristics are summarized in Table 1.

Serum cytokine levels.
Serum IFN-γ levels were measured using the BioPlex
system, a biometric sandwich ELISA assay from BioRad
Inc (Hercules, CA, USA) in accordance with the manufac-
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turer’s instructions. Serum from four patients during
periods of attack and before treatment (denoted ‘patients
with active disease’) and from 12 healthy control subjects
was collected, stored at –80°C, and assayed in duplicate.

Normalization of array data
Normalization to correct for technical variation among indi-
vidual microarray hybridizations was conducted using a
two-step procedure described in detail elsewhere [15]. In
brief, the procedure is based on the fact that spot intensi-
ties from genes not expressed by the samples of interest
constitute noise and are therefore normally distributed.
The method models the signals from nonexpressed genes
to a normal distribution with a mean of 0 and standard
deviation (SD) of 1, using an iterative nonlinear curve-fitting
procedure.

A second normalization step is then performed using the
genes significantly expressed above background (> 3 SD

above background). Gene expression values are log-trans-
formed, with negative values replaced by the lowest posi-
tive logarithmic value obtained. Expression profiles of
genes statistically significantly expressed above back-
ground are then adjusted to each other using a robust
regression analysis. This analysis is based on the observa-
tion that the expression levels of the majority of genes do
not change in compared samples, and that expression
values are normally distributed around a regression line
with a small proportion of differentially expressed ‘outliers’.
The outliers’ contribution in the regression analysis is
down-weighted in an iterative manner until the residuals
are normally distributed as measured by deviations from
the regression line calculated against the averaged profile.
Expression profiles of both control and experimental
groups are then scaled to the averaged profile of the
control group.

The two main sources of heterogeneity in gene expression
variations are the ‘additive component’, prominent at low
expression levels, and the ‘multiplicative component’,
prominent at high expression levels [16]. The intensity
measurement yi,j for gene i � I = {i1,…,in} in sample
j � J = {j1,…,jm} is modeled by the equation
yi,j = ai,j + mi,j × eh +ei,j where a is the normal background
(not dependent on gene expression), m is the expression
level in arbitrary units, e is first error term (additive) —
which represents the standard deviation of background —
and h is the second error term, which represents the pro-
portional error (the multiplicative component) [17,18]. The
first error term is excluded from analysis by eliminating
expression values at or below background levels. The
second error term is transformed from multiplicative (and
therefore expression-dependent, rising with expression
level [18]), into additive (expression-independent) by log-
transformation of data [16] using the equation log(y)= log
(m)+h, where h is the residual for log-transformed data.
The independence of h from individual gene expressions
is confirmed with the Kolmogorov–Smirnov normality test
in our experiments. We determine h for each sample as a
deviation of the gene expression ordinates from a regres-
sion line calculated against of the averaged profile for
gene expressions in all samples of the control group. The
majority of these deviations follow a normal distribution.
Genes of the control groups whose deviations belong to
this distribution are expressed at similar levels among
groups; this group is therefore denoted the ‘reference
group’. Variations in expression among samples of the
genes within this group are due principally to technical
variability and normal biologic variation. The parameters of
variation defined by the reference group are used to iden-
tify differentially expressed genes and hypervariable genes
whose expression levels vary in a statistically significant
manner from the reference group (Fig. 1). A standard
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Table 1

Data for patients with polyarticular juvenile rheumatoid arthritis

Patient Age (years) Sex Treatment Final outcome

1 15 F NSAIDs, corticosteroids, MTX Full response

2 11 F NSAIDs, hydroxychloroquine, MTX Studied once during active disease

3 4 M NSAIDs Full response

4 15 F NSAIDs, MTX, corticosteroids Studied once during active disease

5 7 F N/A Studied once during active disease

6 10 M N/A Studied once during active disease

7 7 F NSAIDs, methotrexate, corticosteroids Full response

8 15 F NSAIDs Full response

9 12 M NSAIDs, MTX, corticosteroids Persistent disease (values taken 4 times in an 8-week interval)

F, female; M, male; MTX, methotrexate; N/A, not applicable; NSAIDs, nonsteroidal anti-inflammatory drugs.



F-test is used to determine if a given gene’s expression is
variable with respect to the reference group using Matlab
software (Mathworks, Natick, MA, USA).

Identification of genes differentially expressed in
patients vs control group
These analyses are performed using standard statistical
analysis methods in Matlab software and include:
1. Selection of statistically different levels of expression

using the Student’s t-test with the commonly accepted
significance threshold of P < 0.05. Because of the
large number of genes present on microarrays, a signif-
icant proportion of genes identified as differentially
expressed in this manner will be false positive determi-
nations at this threshold level.

2. An associative t-test, in which the replicated residuals
for each gene in the experimental group are compared
with the entire set of residuals from the reference
group (defined above). The hypothesis that gene
expression in the experimental group, presented as
replicated residuals (deviations from averaged control-
group profile), is distributed similarly to the several
thousand members of the normally distributed set of
residuals for gene expressions in the reference group
is tested. The significance threshold is corrected to
1/(number of genes) to make it improbable that false
positives arise. Only genes with P values below the
threshold of both the Student’s t-test and the associa-
tive t-test are then presented in tables as differentially
expressed genes. Relative ratios of expression for

genes that are differentially expressed above back-
ground in both groups are calculated.

3. Genes expressed distinctively above background in
one group and not in another are defined as uniquely
expressed genes.

Selection of hypervariable (HV) genes
To have an opportunity to evaluate inhomogeneity in gene
expression variability, it is necessary to normalize this vari-
ability to make it independent of the level of gene expres-
sion. The two main sources of heterogeneity in gene
expression variations — additive and multiplicative compo-
nents — are excluded in our analysis by eliminating expres-
sion values at or below background levels and by
log-transformation of the data. Expression deviations η are
determined for each sample as a deviation of the gene
expression ordinates from regression line calculated
against the averaged profile for gene expressions in all
samples of the control group. The majority of these devia-
tions follow a normal distribution. The SD of this distribu-
tion is used for identification of hypervariable genes whose
expression levels vary in a statistically significant manner
from the reference group of stable genes as determined
using an F-test (Fig. 1).

Discriminant function analysis (DFA)
DFA was used for selection of the set of genes that maxi-
mally discriminate among the groups studied. A forward
stepwise DFA was performed in accordance with the
manufacturer’s instructions, using the statistical software
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Figure 1

Graphical representation of hypervariable (HV) gene analysis in patients with juvenile rheumatoid arthritis (JRA) (n = 9) and a reference group
(n = 12). A reference group of genes from the control group whose expression levels do not vary significantly on a population basis was identified
as described in Materials and methods. Expression levels in this reference group, denoted the averaged profile, have a normal distribution. This
group is represented by black lines on a plot of residuals (values representing expression level variance in the control population) vs average gene
expression levels (log10-transformed). Red lines represent genes whose variation in expression in healthy controls or untreated patients with acute
disease was significantly greater than that of the reference group. These genes are defined as hypervariable (HV) genes.



package Statistica (StatSoft, Tulsa, OK, USA). In this
analysis, the model for discrimination is built in a stepwise
manner. Specifically, at each step all variables are
reviewed to determine which will maximally discriminate
among groups. This variable is then included in a discrimi-
native function, denoted a root, which is an equation con-
sisting of a linear combination of gene expression changes
used for the prediction of group membership. An F test is
used to determine the statistical significance of the dis-
criminatory power of the selected genes. The stepwise
procedure is ‘guided’ by a standard threshold for the
F test (established by the analytical package). In general,
variables will continue to be included in the model, as long
as the respective F values for those variables are larger
than this standard threshold. The 170 genes expressed
statistically significant from background in all five groups
of samples (expression levels > 3 SD over background as
defined above) were used for this analysis.

The discriminant potential of the final equations can be
observed in a simple multidimensional plot of the values of
the roots obtained for each group. This provides a graphi-
cal representation of the similarity among the various
groups. The discriminative power of each gene can also
be characterized by the partial Wilks λ coefficient. This
value is equal to the ratio of within-group differences in
expression to within- and between-group differences in
expression. Its value ranges from 1.0 (no discriminatory
power) to 0.0 (perfect discriminatory power).

Biochemical function and pathway analysis
The genes in the data tables presented herein are func-
tionally annotated. Gene functions were obtained from the
Swiss-Prot Protein knowledge base (when available). This
database was created and is maintained by the Swiss
Institute of Bioinformatics (Biozentrum - Basel University,
Basel, Switzerland). Additionally, the software package
Pathway Assist (Strategene, La Jolla, CA, USA) was used
to identify functional interrelationships among the genes
defined as JRA-related in the analyses described above.
This software uses the KEGG, DIP, and BIND databases
and natural language scans of Medline to define function-
ally related genes. These functional relationships were
then graphically represented by the software as a network.

All original programs were written using MathLab and Sta-
tistica statistical software and are available on request
from igor-dozmorov@omrf.ouhsc.edu.

Results
Differential gene expression analysis of active disease
Statistical analysis of the difference of gene expression in
samples from 9 patients and 12 healthy controls gave the
following results. 1716 genes of the total number of 2382
genes in the microarray were expressed distinctively from
background (P < 0.05) in both groups. Of these, 78 were

statistically differentially expressed in either patients or
controls. These genes passed the Student’s t-test at the
threshold of 0.05 and the associative t-test at the thresh-
old of 0.0005, a stringency that results in the selection of
less than one expected false positive and less than one
expected false negative determination. This analysis clas-
sifies differentially expressed genes into four groups:
1. genes expressed at higher levels on average in

untreated patients with active disease, relative to
healthy controls (34 identified, Table 2A);

2. genes expressed at lower levels in treated patients
with active disease, relative to healthy controls
(15 identified, Table 2B).

3. genes whose expression was detected above back-
ground only in untreated patients with active disease
(18 identified, Table 2C); and

4. genes whose expression was detected above back-
ground only in healthy controls (2 identified, Table 2D).

Differential gene expression analysis is a common means
of identifying the genes involved in a given pathophysiol-
ogy. Our analysis identified key regulators of innate immu-
nity and inflammation including the proinflammatory
mediators formyl peptide receptor 1, ICAM-1 (intercellular
adhesion molecule-1), thymosin β4, and PLA-2 (phospho-
lipase A2), which were up-regulated in patients, and the
anti-inflammatory mediator TNF receptor 1 (TNF-R1),
which was down-regulated in patients. Genes regulating
the adaptive immune response were also identified,
including those for β2 microglobulin, MHC class I, GTP-
binding protein-HSR1 (a polymorphic microsatellite
marker in the human MHC class I region), and Sema-
phorin/CD100 (a B-cell and dendritic-cell surface recep-
tor that modulates cellular activation), which were all
up-regulated in patients, and the gene for transcription
factor 8 (a repressor of IL-2 expression), which was down-
regulated in patients. These data highlight the importance
of these genes in regulating the immune and inflammatory
response in JRA.

Interestingly, several of the immunoregulatory genes that
were up-regulated in patients are known to be induced by
interferon γ (IFN-γ), including those for thymosin β4, MHC
class I, and ICAM-1, suggesting that this cytokine is
increased in patients. To test this hypothesis, serum IFN-γ
levels were assessed by ELISA in 4 patients with active
disease and in a group of 12 healthy controls. Patient serum
IFN-γ levels were significantly higher than in healthy controls
(P<0.00067). Values ranged from 60 to 1,626pg/ml in
patients and from <1.4 (the level of sensitivity of the assay)
to 9.6pg/ml in healthy controls (Fig.2), implicating IFN-γ in
the pathophysiology of polyarticlular JRA.

To more fully disclose the pathways relevant to JRA patho-
genesis, the genes identified as differentially expressed in
patients were grouped according to function using
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Table 2

Differentially expressed genes in patients with polyarticular rheumatoid polyarthritis (n = 9) and healthy controls (n = 12)

A. Genes overexpressed in acute untreated patients

Gene bank Name Description AverAD AverHC AD/HC Summary of function

S54761 B2M β2-mu, β2-microglobulin 266.2 57.5 4.6 β2-microglobulin; major component of the hemodialysis-
associated amyloid fibrils

L20941 FTHL6 Ferritin heavy chain 264.8 90.3 2.9 Ferritin heavy polypeptide 1; iron-storage protein

M17733 TMSB4X Thymosin β4 251.7 56.1 4.5 Thymosin β4; sequesters actin monomers and inhibits actin
polymerization

M11147 FTL Ferritin L chain 230.3 82.9 2.8 Ferritin light polypeptide; iron storage protein

Homologous to 224.7 59.1 3.8 Homologous with a truncated and mutated form of
elongation factor human elongation factor 1α subunit
1α 1 (PTI-1)

X04098 ACTG Cytoskeletal γ-actin 219.4 49.4 4.4 γ-actin; member of the non-muscle family of actins

X52008 GLR α2 subunit of inhibitory 215.9 74.5 2.9 α2 subunit of the glycine receptor chloride channel;
glycine receptor binds strychnine and is important for inhibitory

neurotransmission

M11354 H3.3 histone, class B 213.1 62.5 3.4 Member of the H3 histone family; involved in compaction of
DNA into nucleosomes

Y14040 CASH CASH β protein 206.9 71.2 2.9 Caspase-like apoptosis regulatory protein; lacks caspase
catalytic activity

Y13829 EXP40 MBNL protein 184.1 79.4 2.3 Strongly similar to uncharacterized KIAA0428

CD74 158.4 67.0 2.4 HLA-DR antigens associated invariant chain

Coactiosin-like protein 131.6 62.0 2.1 Interacts with 5-lipoxygenase

AF010187 FIBP FGF-1 intracellular 127.6 43.4 2.9 Acidic fibroblast growth factor intracellular binding protein;
binding protein (FIBP) may mediate the mitogenic properties associated with

acidic FGF1

M60627 FMLP N-formylpeptide 122.7 64.7 1.9 Formyl peptide receptor 1, a G protein-coupled receptor;
receptor (fMLP-R26) binds bacterial N-formyl-methionyl peptides

X91257 SERRS Seryl-tRNA synthetase 111.8 59.2 1.9 Cytosolic seryl-tRNA synthetase; class II aminoacyl tRNA
synthetase, aminoacylates its cognate tRNAs with serine
during protein biosynthesis

L13463 G0S8 Helix-loop-helix basic 108.9 65.2 1.7 Regulator of G-protein signalling 2; negatively
phosphoprotein (G0S8) regulates G protein-coupled receptor signalling; has a

basic helix-loop-helix motif

M77693 SSAT Spermidine/spermine 108.0 34.2 3.2 Spermidine/spermine N1-acetyltransferase; catalyzes rate-
N1-acetyltransferase limiting step in polyamine catabolism

J03077 SAP1 Co-β-glucosidase 107.3 37.0 2.9 Prosaposin; precursor of saposins A-D, may bind and
(proactivator) transport gangliosides, cleavage products activate

lysosomal hydrolysis of sphingolipids

X16478 5′ fragment for vimentin 101.0 42.7 2.4 Intermediate filament subunit
N-terminal fragment

J00068 NEM2 Adult skeletal muscle 91.7 39.8 2.3 α1 actin; skeletal muscle-specific actin
α-actin mRNA

M63603 PLB Phospholamban 89.4 46.3 1.9 Phospholamban; regulates the sarcoplasmic reticulum
calcium pump

K00558 K-ALPHA-1 α-tubulin 77.9 36.9 2.1 α-tubulin (k-α-1); may be part of a heterodimer that
polymerizes to form microtubules; member of a family of
microtubule structural proteins

Table continued opposite
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Table 2 (Continued)

A. Genes overexpressed in acute untreated patients (Continued)

Gene bank Name Description AverAD AverHC AD/HC Summary of function

D76444 KF1 hkf-1 68.0 36.0 1.9 May be associated with membranous protein sorting;
contains a zinc finger domain

M27110 PLP Proteolipid protein 51.2 28.1 1.8 Proteolipid protein; predominant protein in myelin
mRNA (PLP)

AF001434 HPAST Hpast (HPAST) 16.1 3.2 5.1 Very strongly similar to murine Ehd; may be involved in
ligand-initiated endocytosis

M33882 IFI-78K p78 protein 11.3 1.4 8.0 Similar to murine Mx; may be a guanine nucleotide-binding
protein

AB006190 AQPap mRNA for 8.4 1.8 4.8 Aquaporin 7; water and glycerol channel expressed
aquaporin adipose predominantly in adipose tissue

D49489 P5 Protein disulfide 7.4 3.2 2.3 Member of the protein disulfide isomerase
isomerase-related superfamily; contains two thioredoxin-like domains
protein P5

X06990 BB2 Intercellular adhesion 5.8 1.5 3.8 Surface glycoprotein; binds the integrin LFA-1 (ITGB2)
molecule-1 ICAM-1 and promotes adhesion; member of the immunoglobulin

superfamily

U39317 UBE2D2 E2 ubiquitin conjugating 5.7 2.4 2.4 Member of the ubiquitin-conjugating enzyme E2 subfamily;
enzyme UbcH5B may catalyze ubiquitination of cellular proteins prior to

degradation

L16842 UQCRC1 Ubiquinol cytochrome-c 5.5 2.7 2.1 Core I protein; subunit of the ubiquinol-cytochrome-c
reductase core I protein oxidoreductase in the mitochondrial respiratory chain

U45448 P2X1 P2x1 receptor 4.7 1.7 2.8 Purinergic receptor 1; ligand-gated ion channel that may
be gated by extracellular adenosine 5′-triphosphate (ATP)

AF083255 RHELP RNA helicase- 4.3 2.2 2.0 Moderately similar to human P72; may be an ATP-
related protein dependent helicase; member of DEAD/H box family, has

conserved C-terminal helicase domain

U68536 ZNF24 Zinc finger protein 4.0 1.4 2.8 Zinc finger protein 24; contains zinc fingers

B. Genes overexpressed in healthy controls

Gene bank Name Description AverAD AverHC HC/AD Summary of function

U00968 SREBP1 SREBP-1 36.0 85.2 2.4 Transcription factor; activates genes involved in lipid
metabolism, translocates to the nucleus and activates
transcription of the LDL receptor and H MG CoA
synthase genes in sterol-depleted cells

M36072 SURF-3 Ribosomal protein 43.5 78.2 1.8 Ribosomal protein L7a; component of the 60-S ribosomal
L7a (surf 3) large subunit subunit

X80909 NACA α NAC mRNA 32.9 68.0 2.1 Nascent-polypeptide-associated complex α subunit; binds
nascent polypeptides and promotes the interaction
between signal recognition particle and signal peptide

M15661 RPL36A Ribosomal protein L36a 35.2 59.6 1.7 Ribosomal protein L36a; component of the large 60-S
ribosomal subunit

U10248 HUMRPL29Ribosomal protein 27.9 48.4 1.7 Ribosomal protein L29; component of the large 60-S
L29 (humrpl29) ribosomal subunit, also functions as a cell surface

heparin/heparan sulfate (HP/HS)-binding protein

M33294 TNF-R Tumor necrosis 10.6 32.4 3.1 Type I tumor necrosis factor receptor; mediates
factor receptor proinflammatory cellular responses; contains a

juxtamembrane domain

D15050 AREB6 Transcription factor 14.6 32.4 2.2 Transcriptional modulator; inhibits interleukin-2 expression
AREB6 in T lymphocytes; contains a zinc finger domain

Table continued overleaf
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Table 2 (Continued)

B. Genes overexpressed in healthy controls (Continued)

Gene bank Name Description AverAD AverHC HC/AD Summary of function

U54559 EIF3S3 Translation initiation 12.6 30.5 2.4 Translation initiation factor 3, subunit 3 (γ, 40kDa); subunit
factor eIF3 p40 subunit of the complex that stabilizes initiator Met-tRNA binding to

40-S subunits

U46751 P60 Phosphotyrosine 9.5 29.1 3.1 Ubiquitin-binding protein; binds SH2 domain of p56lck
independent ligand p62 and ubiquitin; contains G-protein-binding region, PEST

and cys-rich zinc-finger-like motifs

AF017305 Unph Deubiquitinating 11.4 21.7 1.9 Strongly similar to murine Unp; removes ubiquitin from
enzyme UnpEL (UNP) ubiquitin-conjugated proteins; member of the ubiquitin-

specific cysteine (thiol) protease family

M57567 ARF5 ADP-ribosylation factor 6.5 15.4 2.4 ADP-ribosylation factor 5, a GTP-binding protein; 
(hARF5) stimulates cholera toxin activity, may be involved in

vesicular intracellular transport

U02609 TBL3 Transducin-like protein 5.3 9.3 1.8 Contains WD40 repeats

NEDD5 3.0 9.0 3.0 Role of Nedd5 in neurite outgrowth

CAPON 4.1 8.1 2.0 C-terminal PDZ domain ligand of neuronal nitric oxide
synthase.

Adenylate cyclase, 3.4 6.4 1.9 Adenylate cyclase (type 7), an ATP-pyrophosphate lyase;
type VII converts ATP to cAMP

C. Genes expressed in active untreated patients only

Gene bank Name Description AverAD AverHC Summary of function

D14874 PROAM- Adrenomedullin 6.8 ND Precursor of adrenomedullin (AM) and the putative 20-amino-acid
N20 peptide proAM-N20; regulates blood pressure and heart rate

X86556 ACADVL HVLCAD gene 2.8 ND Very-long-chain-acyl-coenzyme-A dehydrogenase; oxidizes
straight-chain acyl-CoAs

X78873 PPP1R2 Inhibitor 2 gene 2.6 ND Inhibitory subunit 2 of protein phosphatase 1; associates with the
γ isoform of protein phosphatase 1

M28099 FBP Folate-binding protein 1.4 ND Adult folate-binding protein 1 (folate receptor α); binds and initiates
(FBP) transport of folate and methotrexate

U60800 CD100 Semaphorin (CD100) 1.4 ND Member of the semaphorin family of chemorepellant proteins;
induces B lymphocytes to aggregate and promotes their 
differentiation 

M83233 HTF4A Transcription factor 1.2 ND Transcriptional activator; binds to the immunoglobulin enhancer
(HTF4A) E-box consensus sequence; contains a basic helix-loop-helix

domain

M22430 PLA2L RASF-A PLA2 0.9 ND Group IIA secretory phospholipase A2; hydrolyzes the phospholipid
sn-2 ester bond, releasing a lysophospholipid and a free fatty
acid; similar to murine Pla2g2a

AF005080 XP5 Skin-specific protein 0.9 ND Skin-specific protein
(xp5)

U96759 VBP-1 von-Hippel–Lindau- 0.8 ND von-Hippel–Lindau-binding protein; binds tumor suppressor VHL
binding protein (VBP-1) and forms a complex with VHL protein; has a consensus site for

tyrosine phosphorylation

X59498 TBPA Ttr mRNA for 0.7 ND Transthyretin (prealbumin); carrier protein, transports thyroid
transthyretin hormones and retinol in the plasma

L25665 HSR1 GTP-binding protein 0.6 ND Putative GTP-binding protein
(HSR1)

U24163 FZRB Frizzled related protein 0.6 ND Frizzled-related protein; similar to frizzled family of receptors
Frzb precursor (fzrb)

Table continued opposite



recently developed commercial software (Pathway Assist,
Ariadne Genomics, Rockville, MD, USA). A subset of func-
tionally interrelated genes was identified and this network
of genes graphically represented (Fig. 3). This analysis

highlighted the importance of inflammatory and immune
modulation, as well as such basic cellular processes rele-
vant to leukocyte function as apoptosis, motility, and prolif-
eration. The network of functionally related genes
generated by this software allows the connections among
these basic physiologic processes to be identified,
demonstrating that the pathophysiologic response of
these patients is highly coordinated.

Higher variability of genes in active disease
A novel analytical method was applied to the microarray
data: identification of genes whose expression is relatively
unchanging in the control population and becomes HV in
JRA patients with active disease. The logical basis of this
approach was based on the hypothesis that the loss of
homeostasis characteristic of active autoimmune disease
can be used to identify genes whose expression regulates
the processes involved. For example, temperature is tightly
regulated in healthy controls and is relatively stable on a
population level. In patients with active polyarticular JRA,
low-grade fever is relatively common and temperature
levels vary on a population basis to a greater degree than in
healthy controls. Therefore, the genes that code for regula-
tors of pathophysiologic processes such as temperature
control, or, by analogy, inflammatory response, may like-
wise be expected to vary on a population level in patients
more than in healthy controls.
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Table 2 (Continued)

C. Genes expressed in active untreated patients only (Continued)

Gene bank Name Description AverAD AverHC Summary of function

X78031 FUCT-VII α-1,3-fucosyl- 0.4 ND Leukocyte α-1,3-fucosyltransferase; functions in selectin ligand
transferase synthesis

L11924 MST1 Macrophage-stimulating 0.4 ND Proapoptotic when overexpressed; binds p53
protein (MST1)

M26393 Short-chain-acyl-CoA 0.4 ND Short-chain-acyl-coenzyme-A dehydrogenase; may act in the first
dehydrogenase step in beta-oxidation of C4–C6 fatty acids; strongly similar to

murine Acads

U25033 NNAT Neuronatin α 0.4 ND Neuronatin; possibly functions to regulate ion channels during brain
development

X95073 TRAX Translin-associated 0.4 ND Interacts with translin (TSN)
protein X

U63336 CAT56 MHC class I region 0.4 ND Undefined
proline-rich protein

D. Genes expressed in healthy controls only

Gene bank Name Description AverAD AverHC Summary of function

X57637 GGTA mRNA involved in ND 1.3 Component A of geranylgeranyl transferase; modifies Rab
tapetochoroidal dystrophy proteins; has similarity to guanine nucleotide dissociation

inhibitors

Z11566 PR22 Pr22 protein ND 0.5 Stathmin (oncoprotein 18), a cytosolic phosphoprotein

AverAD, AverHC, average expression level (defined as the number of standard deviations from mean of background) in untreated patients with
active disease and in healthy controls, respectively. ND, none detected

Figure 2

Serum IFN-γ levels in untreated patients with active juvenile rheumatoid
arthritis (JRA) and healthy controls (HC). A scatter plot of serum IFN-γ
concentrations in 4 patients with active disease (AD) and 13 HC is
shown. The values for 11 HC that were < 1.4 pg/ml (the limit of
detection of the assay) are represented by triangular symbols that
appear as the lowest value in the distribution. Average values in a
given population are represented as a horizontal line. Concentrations
are shown in pg/ml on a log scale.



In this analysis, 444 genes were identified as HV genes in
untreated patients with active disease and stable or
expressed below background in healthy controls (see
Additional file 1).

Among the 122 genes identified as HV genes in both
groups, 27 had a statistically significant higher level of vari-
ation in untreated patients with active disease (Table 3).
Many of the genes identified as increasing in variability in
these patients have a direct role in inflammation and
immune regulation and are known to be involved in inflam-
matory arthritis. These genes provide a more concise
picture of the molecular pathophysiology of JRA than is
obtained in a traditional analysis of differentially expressed
genes and include: IL-8, MHC class I, regulators of TNF-α
(e.g. TGFβ1-induced anti-apoptotic factor 1) and granulo-
cyte/macrophage-colony-stimulating factor (GM-CSF) (e.g.
cold shock protein A), and human cartilage protein gp-39
(a major secretory product of articular chondrocytes and
synovial cells). It is of note that none of these 27 genes
were identified by differential expression analysis.

Pathway analysis software was used to reveal the principal
biologic processes revealed by these data. Interestingly,

while the genes identified by HV analysis were distinct
from those identified by differential expression analysis,
the physiologic processes identified, such as inflammation
and immune modulation, apoptosis, and cell motility, were
similar (Fig. 4).

Discriminant function analysis (DFA)
In the above analyses, genes with behavior that varies
between patients with active disease and control individ-
uals were identified. DFA is distinct from the above
analyses in that it identifies a set of genes whose expres-
sion levels, as a group, vary among populations. In this
analysis, genes with the most significant power to dis-
criminate among groups when used as variables in a
linear equation, denoted a root, were identified. The
groups of genes identified by DFA are statistically inter-
related and may therefore be functionally interrelated.
For this analysis, the following groups were used: nine
untreated patients with acute disease; five of these nine
patients were followed up prospectively during treat-
ment, with partially responsive, fully responsive, and non-
responsive patients defined as independent groups; and
six healthy controls.
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Figure 3

Functional associations of genes selected as differentially expressed in patients with juvenile rheumatoid arthritis (JRA) and normal controls. Tabular
data from differential expression analysis were analyzed using Pathway Assist software. The graphical output delineating a functionally related
network of genes is shown. Genes that were expressed at higher levels in JRA patients are represented as red ovals. Genes expressed at higher
levels in controls are represented as blue ovals. Major biologic processes related to these genes are represented as yellow rectangles. White ovals
represent genes that are functionally related to the genes used for analysis. Upon addition of these genes, several functional connections among the
genes being analyzed can be observed. Green squares signify that a defined regulatory relationship exits between genes. Blue squares signify that a
putative regulatory relationship between genes has been identified but not biochemically defined. +, positive regulation; –, negative regulation.
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Table 3

Genes that distinguish patients with active juvenile rheumatoid arthritis by hypervariable gene analysis

Gene bank Name Description F-testa Summary of function

U26173 IL3BP1 bZIP protein NF-IL3A (IL3BP1) 4.5E-06 Basic leucine zipper (bZIP) transcription factor; activates IL3 gene
expression and can also repress transcription; binds to regulatory
sequences in the promoters of the adenovirus E4, γ interferon (IFNG), and
interleukin 3 (IL3) genes

X87689 G6 Putative p64 CLCP protein 0.00245 Nuclear chloride channel-27; intracellular chloride channel

Y00787 IL-8 IL-8 0.00307 Interleukin 8; cytokine that plays a role in chemoattraction and activation of
neutrophils; has similarity to several platelet-derived factors

M62831 ETR101 Transcription factor ETR101 0.00336 Immediate early gene product induced by TPA stimulation in promyelocytic
leukemia cell line HL-60 and in other leukemia cell lines

X83394 HLA-C HLA-Cw*0704 0.00553 Heavy chain that associates with β2-microglobulin; forms MHC class I
complex that binds peptides to present them to CTLs

D88378 PSMF1 Proteasome inhibitor hPI31 subunit 0.00556 A protein inhibitor of the 20-S proteasome

U08815 SPA61 Spliceosomal protein (SAP 61) 0.0059 Spliceosome-associated protein 3a, subunit 3; component of the essential
heterotrimeric splicing factor SF3a; contains a zinc finger

M55067 NCF-1 47-kDa autosomal 0.0068 Neutrophil cytosol factor 1; cytosolic component of NADPH oxidase,
granulomatous disease protein required for neutrophil superoxide production

D42063 RANBP2 RanBP2 0.0073 Ran binding protein 2; component of the nuclear pore complex; has leucine-
rich and cyclophilin-like domains, and zinc finger motifs

M80927 YKL40 Glycoprotein 0.00793 Cartilage glycoprotein-39; has similarity to chitinases
(GP-39 synovial protein)

X06272 SRPR Docking protein 0.00826 Signal recognition particle receptor (docking protein); binds the SRP
complexed with the translating ribosome to prepare for translocation of the
polypeptide across the rough endoplasmic reticulum membrane

D44497 Clabp Actin-binding protein p57 0.00981 Coronin 1A; binds actin, involved in mitosis, cell motility, formation of
phagocytic vacuoles and phagocytosis; has five WD domains

X86693 HEVIN Hevin-like protein 0.01158 Expressed in high endothelial venules, may have antiadhesive properties
and a role in leukocyte extravasation.

D86970 MAJN TGFβ1-induced antiapoptotic 0.01174 Protects against tumor necrosis factor-α (TNF)-induced apoptosis
factor

X69391 Ribosomal protein L6 0.01251 mRNA for ribosomal protein L6

X76105 DAP DAP-1 mRNA 0.01319 Death-associated protein; may mediate apoptosis induced by interferon-γ;
has proline-rich regions

Y08110 SORLA Mosaic protein LR11 0.02155 Sortilin-related receptor; may be involved in the uptake of lipoproteins and
proteases

D88153 HYA22 HYA22 0.02189 Protein with similarity to Saccharomyces cerevisiae Psr1p and Psr2p

D21267 SNAP-25 Synaptosomal-associated 0.02199 Synaptosomal-associated protein, 25-kDa; involved in membrane fusion
protein, 25kDa during exocytosis; member of the SNAP family of proteins

M11233 CPSD Cathepsin D 0.02328 Cathepsin D; lysosomal aspartyl protease (acid protease)

D88827 ZNF# Zinc finger protein FPM315 0.0244 C2H2-type zinc finger protein 263; may act as a transcriptional repressor;
contains C2H2-type zinc fingers, and KRAB-A and LeR domains

U06452 MART-1 Melanoma antigen recognized 0.02575 Melan-A (melanoma antigen recognized by T cells 1)
by T cells

X13403 OTF1 Octamer-binding protein Oct-1 0.02722 Ubiquitously expressed POU homeodomain transcription factor 1; binds to
the octamer motif ATGCAAAT

X56976 UBE1X Ubiquitin-activating enzyme E1 0.02928 Ubiquitin-activating enzyme E1; activates ubiquitin to mark cellular proteins
for degradation; very strongly similar to murine Ube1x, which may function
in DNA repair

X95325 CSDA DNA-binding protein A variant 0.03421 Member of a family of transcriptional regulators; binds and represses the
promoter of the GM-CSF gene; contains a cold-shock domain

X58536 HLA-C HLA class I locus C heavy chain 0.035 Heavy chain that associates with β2-microglobulin; forms MHC class I
complex that binds peptides to present them to CTLs

U16031 IL-4-STAT Transcription factor IL-4 Stat 0.03632 Signal transducer and activator of transcription 6, interleukin-4 induced;
activates expression of the interleukin-4 receptor gene in response to
interleukin-4 and mediates JAK kinase signal transduction; member of the
STAT family

aStatistical parameter assessing the relative variation in patients with active disease vs healthy controls.



Interestingly, literature searches and pathway analysis
revealed that nearly all of the 19 genes identified by this
analysis are either directly or indirectly associated with
immune modulation and autoimmune disease (Table 4;
Fig. 5). These genes include: IL-1 receptor antagonist, an
anti-inflammatory cytokine that has been recently
approved by the FDA for use as a biologic therapy in
inflammatory arthritis [19] and which also plays a signifi-
cant role in the pathogenesis of polyarticular JRA [20];
TGFβ, another potent anti-inflammatory cytokine, which is
involved in many biologic processes including immune
homeostasis, regulation of apoptosis, and self-tolerance
[21]; IL-8, which has been shown to be elevated in JRA
patients and plays a key role in joint inflammation by
recruiting neutrophils to synovial tissue and fluid [22,23];
ferritin, highlighting the significance of anemia of chronic
disease associated with JRA [24]; transcription factor
octamer-binding protein (Oct-1), which is expressed in
synovial cells in the majority of RA patients and may modu-
late synovial outgrowth [25]; CD63, a leukocyte adhesion
molecule and marker of dendritic cell maturation and neu-
trophil activation [26–28]; and GLUT/SLC2A, a glucose
transporter protein expressed by chondrocytes that is reg-
ulated by TNF-α, IL-1β, IGF-1, and a key modulator of

skeletal development, chondrogenesis, and cartilage
degradation in osteoarthritis [29].

Fourteen of the 19 genes identified by DFA were uniquely
identified by this analysis; 2 of the 19, Ribosomal protein
L37 and Ferritin light chain, were also identified by differ-
ential expression analysis, and 2 of the 19, IL-8 and Oct-1,
were also identified by HV gene analysis, demonstrating
that these three analyses are complementary, yielding pre-
dominantly nonoverlapping results (Fig. 6).

The values of the roots obtained by DFA analysis can be
used to graphically represent the differences of the gene
expression values obtained for the groups analyzed.
Values obtained for individuals in a given group tended to
cluster (Fig. 7), suggesting that the phenotypic changes
occurring in a given group during treatment are common
to all individuals of that group. Moreover, this graphical
representation demonstrates that as patients respond to
therapy, they tend to have expression profiles that are less
like those of untreated patients with active disease and
more like those of healthy controls (Fig. 7). In fact, the dis-
tance a given group of treated patients moved towards the
normal controls was proportional to their level of response,
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Figure 4

Functional associations of hypervariable (HV) genes in patients with juvenile rheumatoid arthritis (JRA). Tabular data from the HV gene analysis was
analyzed using Pathway Assist software. The graphical output delineating a functionally related network of genes is shown. Genes that displayed
increased variation in expression in JRA patients are represented as red ovals. Major biologic processes related to these genes are represented as
yellow rectangles. JRA is represented as a yellow square to delineate genes directly associated with pathology. Intracellular objects upon which a
given set of genes acts are represented as yellow ovals. White ovals represent genes that are functionally related to the genes used for analysis.
White hexagons represent organelles functionally associated with the genes analyzed. Orange hexagons represent classes of small molecules
associated with the genes analyzed. Green squares signify that a defined regulatory relationship exits between genes. Blue squares signify that a
putative regulatory relationship between genes has been identified but not biochemically defined. +, positive regulation; –, negative regulation.



with fully responsive patients moving closer to healthy
controls than partially responsive patients (Fig. 7). In con-
trast, the position on the graph of the values obtained from
a patient who was nonresponsive to standard therapy,
whose disease severity actually increased after initiation of
therapy (values for four separate samples taken between 2
and 8 weeks after therapy are represented in Fig. 7),
changed in a manner that is distinct from those respond-
ing to therapy (responders were positioned away from the
active disease group towards the healthy controls in a
clockwise manner, and the four values obtained from the
nonresponsive patient were positioned away from the
active disease group in a counterclockwise manner)
(Fig. 7). This method of pharmacogenomic analysis there-
fore provides a means of developing a clinical assay that
may predict patients’ response to therapy early in the
course of polyarticular JRA treatment.

Discussion
We have used three distinct statistical methods for analyz-
ing microarray data from children with polyarticular JRA.
These methods include a standard analysis of differential
gene expression, a novel means of assessing genes
whose behavior dynamics are modulated in populations
(denoted hypervariable gene analysis), and DFA to identify
the genes and molecular pathways involved in the patho-
genesis of polyarticular JRA. Each method identified both
well established and novel mechanisms of disease patho-
genesis, and because the biologic basis of each of the

methods is unique, the methods are complementary, with
each highlighting a different aspect of the disease.

Analysis of differentially expressed genes demonstrated
that in patients with active disease, principal modulators of
both adaptive and innate immunity were up-regulated,
consistent with the hyperactivation of the immune and
inflammatory responses characteristic of this disease.
Disease-specific up-regulation of a group of interferon-
induced genes, including thymosin β4, MHC class I, and
ICAM-1, was observed. Moreover, serum IFN-γ levels were
dramatically increased in patients with active disease rela-
tive to healthy controls. These data provide the first broad-
based molecular evidence for the existing hypothesis that
JRA is a Th-1-biased disorder and demonstrate the patho-
logic immunomodulatory role of IFN-γ in these patients
[30]. These data also suggest that therapy directed
specifically at reducing IFN-γ levels may prove efficacious
in treating JRA.

The fact that several genes involved in oxidative stress are
among the genes most significantly up-regulated during
active disease suggests that this process also plays a sig-
nificant role in the pathophysiology of polyarticular JRA, as
suggested by previous studies of oxidation products and
free radical scavengers in patients [31]. These findings
are consistent with our previous work demonstrating the
importance of immune complexes (potent triggers to neu-
trophil superoxide release) [32,33] in the pathophysiology
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Figure 5

Functional associations of genes identified by discriminant function analysis (DFA) in patients with juvenile rheumatoid arthritis (JRA) who were
undergoing treatment. Tabular data from the this analysis was analyzed using Pathway Assist software. The graphical output delineating a
functionally related network of genes is shown. Genes that were associated with disease or treatment response are represented as red ovals.
Major biologic processes related to these genes are represented as yellow rectangles. White ovals represent genes that are functionally related to
the genes used for analysis. Orange hexagons represent classes of small molecules associated with the genes analyzed, and orange circles
represent specific small molecules associated with the genes analyzed. Green squares signify that a defined regulatory relationship exits between
genes. Blue squares signify that a putative regulatory relationship between genes has been identified but not biochemically defined. +, positive
regulation; –, negative regulation.
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Table 4

Genes that distinguish children with active juvenile rheumatoid arthritis in discriminant function analysis

Gene bank Name Description AverAD AverHC Partial Wilks λ Summary of function

M11147 FTL Ferritin L chain 23.25 82.87 0.008 Ferritin light polypeptide; iron storage
protein

D23661 RPL37 Ribosomal protein L37 65.72 73.62 0.027 Ribosomal protein L37; component of
the large 60-S ribosomal subunit

M59907 GRANULOPHYSIN CD63 27.03 21.75 0.006 Melanoma-associated antigen; may
function as a blood platelet
activation marker

M20681 SLC2A3P SLC2A3 glucose transporter 26.23 29.56 0.004 Facilitated glucose transporter

Y14737 HDC Immunoglobulin heavy constant γ 3 22.24 56.99 0.002 Constant region of heavy chain of IgG3

U14747 VSNL1 VSNL1 22.05 12.47 0.174 Visinin-like protein 1; may bind
calcium

X02812 TGFB1 TGFB1 20.11 30.1 0.005 Transforming growth factor β1;
regulates cell proliferation,
differentiation, and apoptosis

Y00787 IL-8 IL-8 19.36 54.2 0.018 Interleukin 8; cytokine that plays a role
in chemoattraction and activation of
neutrophils

AF026939 RIGG IFNIT4 interferon-induced protein 16.68 1.97 0.026 Interferon-induced protein

X13403 OTF1 Octamer-binding protein Oct-1 15.46 14.96 0.005 Ubiquitously expressed POU
homeodomain transcription factor 1

Y08110 SORLA Sortilin-related receptor 14.48 28.66 0.002 Sortilin-related receptor; may be
involved in the uptake of lipoproteins
and proteases

U75283 SR-BP1 Sigma receptor 11.46 5.34 0.004 Type I sigma receptor;
transmembrane protein that interacts
with psychotomimetic drugs,
including cocaine and amphetamines

X02492 15-Jun Interferon-inducible fragment 10.3 1.88 0.024 Induced by α and β interferon;
hydrophobic

M64722 APOJ Clusterin 9.74 4.84 0.003 Clusterin, glycoprotein found in high-
density lipoproteins and endocrine
and neuronal granules; has a role in
the terminal complement reaction

M55646 IL1RN IL-1 receptor antagonist 7.03 3.69 0.056 Interleukin 1 receptor antagonist;
binds to and inhibits the IL-1 receptor

X57198 TFIIS Transcription elongation factor A 6.38 7.9 0.005 Transcription elongation factor A (SII);
stimulates the activity of the RNA
polymerase II elongation complex

AF043233 HPECT1 Caco-2 oligopeptide transporter 5.49 2.87 0.004 H(+)-coupled peptide transporter;
absorbs small peptides produced by
digestion of dietary proteins and may
transport β-lactam antibiotics

U26173 IL3BP1 Interleukin 3 regulated nuclear factor 5.4 6.58 0.033 Basic leucine zipper (bZIP)
transcription factor; activates IL3
gene expression and can also repress
transcription; binds to regulatory
sequences in the promoters of the
adenovirus E4, γ interferon (IFNG),
and interleukin 3 (IL3) genes

X05997 Gastric lipase 5.27 28.58 0.008 Digestion of dietary triglycerides in the
gastrointestinal tract

AverAD, AverHC, average expression level (defined as the number of standard deviations from mean of background) in untreated patients with
active disease and in healthy controls, respectively. The discriminative power of each gene can also be characterized by the partial Wilks λ
coefficient. This value is equal to the ratio of within-group differences in expression to within- and between-group differences in expression. It
ranges from 1.0 (no discriminatory power) to 0.0 (perfect discriminatory power). ND, none detected.



of polyarticular JRA [14] and provide a logical basis to
begin investigations of novel treatment modalities target-
ing these pathways.

This work represents the first application of hypervariable
gene analysis to the study of human disease of which we
are aware. This statistical measure of gene variability was
designed to identify genes that have lost their normal reg-
ulation in a manner that mimics the loss of homeostasis
characteristic of autoimmune disease. Regulation of genes
that are involved in such processes as inflammatory cell
and immune cell activity, which will vary in groups of
affected individuals more than in healthy controls, would
therefore be expected to become increasingly chaotic at
the population level in groups of affected individuals. This
hypothesis is validated by the fact that a significant
number of genes identified by this analysis are involved in

immune and inflammatory regulation and have been impli-
cated as mediators of autoimmune disease. Importantly,
the overall picture of disease is more accurately depicted
when the genes identified by HV analysis are added to
those identified as differentially expressed. For example,
neutrophils play a principal role in disease pathogenesis
[34–36,1]. However, genes that regulate neutrophil func-
tion, such as those for IL-8, 47-kDa autosomal granuloma-
tous disease protein, DNA-binding protein A variant
(which regulates GM-CSF production), and cathepsin D, a
potent neutrophil collagenase found to be highly
expressed in the synovium of JRA, RA, and osteoarthritis
patients [37–39], were identified by HV gene analysis and
not by identification of genes that are up- or down-regu-
lated in patients or controls. Moreover, the genes for
YKL-40 (or cartilage protein-39), a cartilage-derived
autoantigen that is up-regulated in RA and thought to be a
direct target of autoimmune attack in that disease
[40–43], EDG-1, a pro-angiogenic protein essential for
vascular maturation [44], and Oct-1, a transcription factor
expressed in RA synovial cells and which regulates gene
transcription [21], were more highly variable in JRA than in
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Figure 6

An overview of the results from the three analytical methods. The
numbers of genes that were identified by differential expression
analysis, hypervariable (HV) gene analysis, and discriminant function
analysis (DFA) are represented in a Venn diagram. The numbers of
genes identified uniquely in a given analysis as relevant to patients with
juvenile rheumatoid arthritis (JRA) are shown in nonoverlapping
regions. The numbers of genes identified in more than one analysis are
shown in overlapping regions. HC, genes expressed at higher levels in
healthy controls; JRA, genes expressed at higher levels in patients.

Figure 7

A graphical representation of the discriminatory potential of
discriminant function analysis (DFA). DFA was used to identify, in a
cohort of treated patients with juvenile rheumatoid arthritis (JRA) and
healthy controls, a subset of genes whose expression values can be
linearly combined in an equation, denoted a root, whose overall value is
distinct for a given characterized group. The expression values of the
individuals in the cohort were plotted in three dimensions to visually
represent the relative differences in gene expression among the
distinct populations. Gene expression values were plotted on this
graph for nine untreated patients with active disease. Five of these nine
patients were followed up prospectively during treatment. Four
patients responded to treatment and one patient was nonresponsive.
The values obtained for the four responsive patients at the time of
partial response (after 2–4 weeks of treatment) and full response
(6–8 weeks) are shown, as are four independent values obtained from
a nonresponsive patient (taken during an 8-week interval). Values for
healthy controls are also represented. Values obtained for individuals
from each of these groups tended to cluster. Response to therapy was
reflected in the spatial relationships among groups.



controls, indicating that these proteins may play a major
role in joint-specific pathology, including erosions, in poly-
articular JRA, although they were not detected as signifi-
cantly differentially regulated. On the basis of these
findings, it is interesting to speculate that polyarticular JRA
may be kept in check by the synchrony of a distinct subset
of disease-specific genes whose dysregulation can pre-
dispose a patient to a flare in disease activity. These
results suggest that hypervariable gene analysis will be a
useful adjunct to traditional analyses of differential gene
expression.

Among the most important aspects of the results reported
here was the fact that DFA of microarray data may predict
therapeutic response to specific therapies. The predictive
potential of this analysis was based on the finding that the
dynamics of gene expression in patients with active
disease were modulated towards levels characteristic of
healthy controls in proportion to a given individual’s
response to therapy. These data suggest that successful
immunosuppressive therapy re-establishes some level of
normality in these patients. This hypothesis is consistent
with the fact that, in effectively treated patients, the
disease is suppressed for some time, as if patients have
re-established normal, or near-normal, homeostasis. It is
also consistent with the clinical observation that disease
activity can flare after periods of relative quiescence, as if
this re-established homeostasis requires some trigger to
be disrupted.

It is useful to note that there was uniform regression
towards a normal profile, whether the response was
achieved using nonsteroidal anti-inflammatory drugs alone
or required more potent agents such as methotrexate,
suggesting that the actions of these agents on the
immune and inflammatory response in a successfully
treated patient are similar. Given that treatment response
can be predicted by DFA relatively early in the treatment
course, these results demonstrate the potential for using
pharmacogenomic analyses to identify the most effica-
cious treatment modality for a given patient.

We do not assert that this analysis is the ‘final say’ for pre-
dicting therapeutic response in polyarticular JRA. These
preliminary investigations will need to be followed up lon-
gitudinally with a larger group of patients, and individual
response profiles will need to be developed for specific
agents (e.g. nonsteroidal anti-inflammatory drugs,
methotrexate, etc). Despite these limits, these data con-
clusively demonstrate the power of analyzing gene expres-
sion behavior using DFA in analysis of complex diseases
such as polyarticular JRA.

Conclusion
We have demonstrated that the relevance of microarray
data can be maximized by applying bioinformatics tools

that specifically address the nature of the data obtained.
Standard differential gene expression analysis was used
to illuminate specific pathways relevant to disease patho-
physiology. Moreover, a novel statistical method was
created specifically to exploit the fact that autoimmune
disease is characterized by loss of homeostasis, and
therefore that expression of immune and inflammatory
genes that regulate and affect these pathophysiologic
processes will vary more in patients than in healthy con-
trols. Lastly, DFA was used to analyze prospective data
from patients treated with conventional therapy, as this is
the most powerful analytical tool for obtaining data from a
complex cohort. These later methods proved complemen-
tary to the conventional analysis of microarray data and
highlighted previously characterized aspects and identi-
fied novel aspects of disease pathophysiology. Impor-
tantly, the results of the DFA could be used to develop a
clinical assay that may predict therapeutic response in
patients early in the treatment course, demonstrating that
molecular outcomes, when measured on a comprehensive
scale, can be used as prognostically relevant biologic
markers of disease activity.
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