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Peripheral blood CD4*CD25*CD127"°" regulatory
T cells are significantly increased by tocilizumab
treatment in patients with rheumatoid arthritis:
increase in regulatory T cells correlates with

clinical response
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Abstract

from baseline to week 52 by flow cytometry analysis.

remission group (P < 0.001).

Introduction: Tocilizumab (TCZ), an anti-interleukin-6 receptor antibody, is clinically effective against rheumatoid
arthritis (RA), and several reports have indicated how TCZ influences a number of mechanisms underlying RA
pathogenesis. However, it is still unclear whether TCZ affects inflammatory cells in peripheral blood and whether
any such changes are associated with clinical response. We evaluated associations between proportions of subsets
of peripheral immune cells and clinical response in patients with RA treated with TCZ.

Methods: Thirty-nine consecutive patients with RA who started to receive TCZ as their first biologic between March
2010 and April 2012 were enrolled. The proportions of several subsets of peripheral cells with their levels of
expression of differentiation markers, activation markers and costimulatory molecules were measured sequentially

Results: Clinical Disease Activity Index (CDAI) remission was achieved in 53.8% of patients at week 52 of TCZ therapy.
The proportions of CD4*CD257CD127"°" regulatory T cells (Treg) and HLA-DR™ activated T,eq cells significantly increased
with TCZ therapy (P < 0.001 and P < 0.001, respectively), whereas proportions of CD3*CD4*CXCR3™CCR6TCD1617 T
helper 17 cells did not change over the 52 weeks. The proportions of CD20CD27" memory B cells, HLA-DRTCD14*
and CD69*CD14™ activated monocytes, and CD167CD 14" monocytes significantly decreased (P < 0.001, P < 0.001,
P<0.001 and P<0.001, respectively). Among them, only the change in T4 cells was inversely correlated with the
change in CDAI score (p =—0.40, P=0.011). The most dynamic increase in T4 cells was observed in the CDAI

Conclusion: This study demonstrates that TCZ affected proportions of circulating immune cells in patients with
RA. The proportion of T,eq cells among CD4" cells correlated well with clinical response.

Introduction

T cells (especially CD4" T cells), monocytes and B cells are
considered to be involved in the pathogenesis of rheuma-
toid arthritis (RA) [1]. It is frequently considered that de-
creasing the number and/or activity of lymphocytes and
other immune cells by RA treatment can reduce disease
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activity. The first evidence of this was seen in preliminary
clinical trials in which targeting CD4" T cells with anti-
CD4 monoclonal antibodies (mAbs) resulted in clinical
improvement of RA, albeit only modestly [2]. Abatacept, a
cytotoxic T lymphocyte antigen 4 immunoglobulin recom-
binant fusion protein that inhibits CD4" T cell activation
by blocking costimulation with antigen-presenting cells
such as B cells and monocytes, showed clinical efficacy
against RA and has been approved worldwide for the
treatment of RA [3]. Depletion of peripheral B cells by the
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anti-CD20 antibody rituximab also improves disease
activity [4].

The anti-interleukin-6 receptor (IL-6R) antibody toci-
lizumab (TCZ) is also clinically effective against RA [5].
Several studies have shown that blocking the IL-6 signal-
ing with TCZ can affect proportions of peripheral blood
cells. Given that IL-6 was originally identified as a B cell
differentiation factor [6,7], it is not surprising that TCZ
affects proportions of B cell populations in patients with
RA. IL-6 also influences differentiation of T cells into ef-
fector T cells (Ty1l, T2 and Ty17 cells) or regulatory T
cells (T,eg) [8-10]. In recent studies, researchers have
shown that IL-6 blockade could favorably affect the
TH17/T e cell imbalance in patients with RA [11,12].
Moreover, IL-6 seems to affect the proliferation and acti-
vation of monocytes that express IL-6R [13,14]. How-
ever, because in previous studies the number of patients,
the period of study and the examined cell populations
were limited, it is not clear whether there is a key popula-
tion of peripheral immune cells that attenuates RA clinical
symptoms through anti-IL-6R therapies [11,12,15]. If these
relationships could be clarified, it would enable medical
researchers to comprehend the pathogenesis of RA from
the view of lymphocyte populations and to find surrogate
markers in order to choose an optimal therapeutic strat-
egy for RA.

The primary objective of this study was to evaluate
multiple different types of peripheral blood cells by using
flow cytometry analysis to identify populations modu-
lated by anti-IL-6R therapy. The secondary objective was
to determine whether any of these populations is strongly
associated with various clinical measures in response to
anti-IL-6R therapy.

Methods

Patients

Eligible patients were those who met the 1987 revised
criteria of the American College of Rheumatology (ACR)
for the classification of RA or the 2010 ACR/European
League Against Rheumatism (EULAR) classification cri-
teria [16,17]. Consecutive patients at our institute who
commenced TCZ as their first biologic agent between
March 2010 and April 2012 were enrolled. They all showed
insufficient response to at least one conventional synthetic
disease-modifying antirheumatic drug (csDMARD). The
enrolled patients were administered 8 mg/kg TCZ every
4 weeks, either with or without other csDMARD:s, in-
cluding methotrexate (MTX). The study protocol was
approved by the ethics committee at Keio University
School of Medicine and was carried out in accordance
with the Declaration of Helsinki and Good Clinical
Practice. Written informed consent was obtained from
all patients.
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Clinical assessments and evaluation of effectiveness
Demographic and clinical characteristics including age,
sex, disease duration, tender joint count (TJC), swollen
joint count (SJC), patient global assessment (patient visual
analogue scale (Pt-VAS)), physician global assessment (doc-
tor’s visual analogue scale (D-VAS)), Health Assessment
Questionnaire Disability Index (HAQ-DI) score, C-reactive
protein (CRP) level, erythrocyte sedimentation rate (ESR),
matrix metalloproteinase-3 (MMP-3) level, rheumatoid
factor (RF) value and anticyclic citrullinated peptide
(CCP) antibody value were obtained from the patients’
medical records.

Disease activity was assessed using the Clinical Disease
Activity Index (CDAI) and Simplified Disease Activity
Index (SDAI). The cutoff values for remission, low disease
activity (LDA), moderate disease activity (MDA) and high
disease activity (HDA) were as follows: for remission,
CDAI <2.8, SDAI <3.3; for LDA, 2.8 <CDAI<10, 3.3<
SDAI < 11; for MDA, 10 < CDAI <22, 11 < SDAI < 26; and
for HDA, CDAI > 22, SDAI > 26 [18].

Cell surface staining and flow cytometry analysis
Peripheral blood mononuclear cells (PBMCs) were ob-
tained at baseline and at weeks 24 and 52 of TCZ treat-
ment. PBMCs were separated by density gradient with
Ficoll-Paque Plus (GE Healthcare, Uppsala, Sweden)
and cryopreserved in CELLBANKER 1 (Nippon Zenyaku
Kogyo, Fukushima, Japan) until use. Thawed cells were
stained for 30 minutes at room temperature under
darkened conditions with the following fluorophore-
labeled mAbs: anti-CD4-VioGreen (Miltenyi Biotec,
Bergisch Gladbach, Germany); anti-CD3-Pacific Blue/
fluorescein isothiocyanate (FITC), anti-CD8-Pacific Blue,
anti-CD14-(APC)-Cy?7, anti-CD20 allophycocyanin-cyanine
7 (APC-Cy7), anti-CD25 phycoerythrin (PE)-Cy5, anti-
CD27-PE-Cy7, anti-CD38-PE-Cy5, anti-CD45RO-PE-
Cy7, anti-CD56-PE/PE-Cy7, anti-CD69-APC/PE-Cy?7,
anti-CD80-FITC, anti-CD86-PE-Cy5, anti-CD127-FITC,
anti-CD161-APC, anti-chemokine (C-X-C motif) recep-
tor 3 (CXCR3)-PE and anti-HLA-DR-APC/APC-Cy7
(all from BD Biosciences, Franklin Lakes, NJ, USA);
anti-CD16-Brilliant Violet 510 and anti-CCR6-Brilliant
Violet 421 (both from BioLegend, San Diego, CA, USA);
and anti-mouse immunoglobulin G isotype-matched
controls (VioGreen from Miltenyi Biotec, the others from
BD Biosciences).

Stained cells were washed twice with 2 ml of phosphate-
buffered saline and analyzed on a MACSQuant analyzer
(Miltenyi Biotec). Dead cells were confirmed with a propi-
dium iodide fluorescence solution (Miltenyi Biotec) and
excluded on the basis of scatter signals. The subsets
analyzed were CD4 and CD8 T cells (including memory,
effector and activation markers) and Ty1, T2, T17, Treg,
B cells, natural killer cells, and monocytes, including their
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subpopulations and activation markers. The peripheral
cell subsets identified in this study were defined by
using cell surface markers on the basis of peripheral cell
subsets described in a previous report (Additional file 1:
Table S1) [19].

Statistical analysis

Continuous data are presented as median and interquar-
tile range (IQR) or as a number with percentage value,
as appropriate. The Wilcoxon test and Kruskal-Wallis test
were used to examine the differences between continuous
variables. Correlation of two continuous variables was an-
alyzed using the Spearman rank correlation coefficient.
Fisher’s exact test was used to compare the proportion of
categorical data between groups. A P-value <0.05 was con-
sidered statistically significant. All statistical analyses were
performed with JMP 10 (SAS Institute, Cary, NC, USA).

Results

Baseline characteristics of patients and associations
between peripheral cell populations and disease activity
at baseline

Table 1 shows the baseline demographics and clinical char-
acteristics of the enrolled patients (N = 39). In this popula-
tion, there was no difference between TCZ monotherapy
and TCZ in combination with MTX in terms of baseline
characteristics.

At baseline, a higher proportion of HLA-DR*CD8" T
cells among the CD8" T cells was significantly associated
with higher CRP, Pt-VAS, SDAI and HAQ-DI, as well as
a higher proportion of naive and memory CD8" T cells
among the CD8" T cells, was significantly associated with
RE, ACPA, SJC, CDAI and SDAI (Additional file 1: Table
S2). A higher proportion of T2 cells among the CD4" T
cells was also significantly associated with TJC, D-VAS,
Pt-VAS, CDAI and SDALI scores. No other baseline subsets
or surface markers correlated with CDAI or SDAI score
(Additional file 1: Table S3).

Changes from baseline in clinical response

All patients in this study received TCZ for the entire
52 weeks. The CDAI and SDAI scores (mean + standard
deviation) significantly decreased from 19.6+9.3 and
21.1 £9.9, respectively, at baseline to 5.5+ 5.2 and 5.5 +
5.2 at week 24 and to 5.2+ 6.0 and 5.6 £ 6.8 at week 52
(P <0.0001). The number and percentage of patients cat-
egorized as having attained remission or as having LDA,
MDA and HDA were as follows for CDAI and SDAI: at
baseline, 0 (0%) and 0 (0%) for remission, 3 (7.7%) and 4
(10.3%) for LDA, 24 (61.5%) and 25 (64.1%) for MDA,
and 12 (30.8%) and 10 (25.6%) for HDA, respectively;
and at week 52, 21 (53.8%) and 22 (56.4%) for remission,
11 (28.2%) and 10 (25.6%) for LDA, 7 (17.9%) and 7
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Table 1 Patient baseline demographics and clinical
characteristics®

Patient characteristics, Mean =SD or n (%) Median (IQR)

N=39

Age, yr 548+133 56 (44 to 63)
Female, n (%) 35 (89.7) -

Disease duration, yr 47+33 45 (1.7 to 8.0)
SJC (range, 0 to 28) 58+38 5Bto7)

TJC (range, 0 to 28) 50+35 4 (310 6)

Pt-VAS (score/100 mm) 462+ 245 45 (30 to 63)
D-VAS (score/100 mm) 423+16.7 39 (32 to 54)
CDAI score 196+9.3 175 (120 to 25.2)
SDAI score 21.1+99 19.8 (134 to 26.9)
HAQ-DI score 1.0+0.7 1(0.51to0 15)
CRP, mg/dl 14+16 0.7 (02t0 2.2)
ESR, mm/h 48.1+320 46 (19 to 68)
MMP-3, ng/ml 1585+ 147.7 100.2 (60.0 to 221.0)
RF-positive, n (%) 33 (84.6) -

ACPA-positive, n (%) 33 (84.6) -

Concomitant methotrexate, 12 (30.8), 80+ 1.2 - 80 (76 to 8.0)
n (%), dose,” mag/wk

Concomitant glucocorticoid, 10 (25.6), 5.1 +2.8 - 5@3tob)

n (%), dose,” mg/day

2ACPA, Anticitrullinated protein antibody; CDAI, Clinical Disease Activity Index;
CRP, C-reactive protein; D-VAS, Doctor’s visual analogue scale; ESR, Erythrocyte
sedimentation rate; HAQ-DI, Health Assessment Questionnaire Disability Index;
MMP-3, Matrix metalloproteinase-3; Pt-VAS, Patient’s visual analogue scale; RF,
Rheumatoid factor; SDAI, Simplified Disease Activity Index; SJC, Swollen joint
count; TJC, Tender joint count. "Mean + standard deviation (SD) and median
(interquartile range (IQR)) among patients receiving drugs.

(17.9%) for MDA, and 0 (0%) and 0 (0%) for HDA, re-
spectively (Additional file 1: Figure S2).

Changes from baseline in peripheral cell subsets

The proportions of memory CD4" T cells among all
CD4" T cells, HLA-DR*CD8" T cells among CD8" T
cells, T,g cells among CD4" T cells, HLA-DR" T, cells
among T, cells, naive B cells among all B cells, and
CD16 CD14" monocytes among CD14" monocytes in-
creased after TCZ treatment (Tables 2 and 3). On the
other hand, the proportions of naive CD4" T cells
among all CD4" T cells, HLA-DR'CD4" T cells among
CD4" T cells, CD86" B cells among all B cells, memory
B cells among all B cells, HLA-DR*CD14" monocytes
among CD14" monocytes, CD69°CD14" monocytes
among CD14" monocytes, and CD16"CD14" monocytes
among CD14" monocytes decreased after TCZ treat-
ment (Tables 2 and 3). The other subsets and their acti-
vation markers were not significantly changed during
TCZ therapy.
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Table 2 Changes in proportions of subsets and surface markers of T cells during tocilizumab treatment

Subsets and surface markers

Median (interquartile range)

Baseline vs. week 52

Baseline Week 24 Week 52 P-value
CD4* T cells/lymphocytes 53.6 (47.3 to 59.4) 534 (473 to 584) 55.3 (49.5 to 60.5) 0.345
Naive CD4" T cells/CD4* T cells 61.8 (57.7 to 69.3) 59.1 (53.7 t0 62.2) 59.1 (51.8 t0 61.8) 0.019%
Memory CD4" T cells/CD4" T cells 30.7 (30.7 to 42.3) 409 (37.8 t0 46.3) 409 (382 10 48.2) 0.010*
HLA-DRCD4" T cells/CD4" T cells 32 (27 to41) 3.1 (261039 26 (210 3.1) 0.005*
CD38"CD4" T cells/CD4™ T cells 324 (263 to 385) 324 (284 to 394) 32,6 (293 to 40.1) 0212
CD69"CDA™ T cells/CDA™ T cells 0.1(0to0.1) 0.1(0t002) 0.1 (0.1 to 0.3) 0.016*
CD8" T cells/lymphocytes 324 (284 to 38.1) 30.8 (26.9 to 37.1) 29.1 (264 to 33.1) 0.052
Naive CD8" T cells/CD8* T cells 60.8 (57.7 to 64.3) 62.1 (595 to 67.5) 62.7 (59.5 to 67.5) 0.087
Memory CD8" T cells/CD8" T cells 39.2 (35.7 t0 42.3) 379 (33910 415) 37.3 (32510 40.5) 0.087
HLA-DR*CD8" T cells/CD8" T cells 164 (134 to0 194) 183 (143 to 194) 194 (17310 214) 0.005*
CD38"CD8" T cells/CD8" T cells 252 (159 1o 36.7) 26.1 (193 to 314) 24.5 (194 to 30) 0.727
CD69CD8™ T cells/CD8™ T cells 1.3(05t02.0) 1.3 (091to 2.1) 09 (03 to 1.3) 0.057
Treg/CD4" T cells 36 (22 t0 43) 42 (261t052) 56 (4510 7.1) <0.001*
Naive Treg/Treq cells 52.8 (44.0 to 59.0) 47.7 (42.6 10 54.9) 496 (46.5 t0 55.7) 0.242
Memory Tieg/Treq cells 472 (41 to 56.1) 52.3 (45.1 to 57.4) 504 (443 to 53.5) 0.242
HLA-DR™ Treg/ Treg Cells 14 (11.7t0 17.7) 16.8 (14.3 to 20.3) 184 (154 10 194) <0.001*
Tu1/CD4" T cells 19 (14.8 to 20.8) 4 (15310 19.3) 20.7 (159 to 22.9) 0.095
HLA-DR" Ty1/T1 cells 453B4t057) 453B4t057) 35221056) 0.119
Th2/CD4A* T cells 46.8 (37.7 10 54.3) 51.8 (42.5 t0 58.7) 433 (346 t0 49.1) 0.179
HLA-DR" T2/T2 cells 20 (1210 3.1) 23 (1910 29) 22 (1810 29) 0.174
Tu17/CDA™ T cells 20(0.78 t0 3.2) 20 (1410 3.2) 20 (1.5 to 3.6) 0342
HLA-DR* Ty17/T417 cells 40 (34 to 44) 36 (3.1 to 4.1) 39 (331042 0323

*Significant differences determined using Wilcoxon’s matched-pairs signed-rank test.

Table 3 Changes in proportions of subsets and surface markers of B cells, natural killer cells and monocytes during

tocilizumab treatment

Subsets and surface markers

Median (interquartile range)

Baseline vs. week 52

Baseline Week 24 Week 52 P-value
B cells/lymphocytes 32 (2to5.1) 41 (3.1t05.2) 41 (31t052) 0118
CD80" B cells/B cells 269 (13510 32) 19.3 (124 to 26.3) 3 (13.2 to 21. 0.045%
CD86" B cells/B cells 42.5 (36,5 t0 47.6) 34 (29.2 to 38.1) 36.7 (32110419 0.009%
HLA-DR™ B cells/B cells 99.6 (99 to 99.8) 994 (98.8 t0 99.8 99.5 (99.3 to 99.8 0.833
Naive B cells/B cells 52 (43.1 to 60.3) 62.7 (52.7 to 68.2 66.7 (57.6 to 74.6 <0.001*
Memory B cells/B cells 48 (39.7 to 56.9) 373 (318t0 473 333 (254 to 424 <0.001*
NK cells/lymphocytes 24.1 (200 to 27.5) 25.8 (21.2 to 30.5 24.5 (209 to 29.5 0401
CD80"CD14" monocytes/CD14* monocytes 0.2 (0.1 to 0.3) 0.2 (0.1 t0 0.3) 0.2 (0.1 t0 0.3) 0433
CD86"CD14" monocytes/CD14* monocytes 99.6 (99.2 t0 99.9) 99.7 (99.3 to 99.9) 99.8 (99.6 to 99.9) 0.054
HLA-DR*CD14" monocytes/CD14" monocytes 99.5 (89.3 t0 99.8) 98.2 (89.7 10 99.6) 94.6 (86 t0 95.8) 0.004*
CD69"CD14" monocytes/CD14* monocytes 66.7 (60.6 to 74.8) 483 (358 t0 70.1) 34 (26.2 to 56.9) <0.001*
CD16"CD14" monocytes/CD14* monocytes 16 (10.3 to 20.9) 86 (4.5 t0 12.6) 8.1 (3.8 1t0 12.9) <0.001*
CD16 CD14" monocytes/CD14* monocytes 84 (79.1 to 89.7) 914 (874 to 95.5) 919 (87.1 to 96.2) <0.001*

*Significant differences using Wilcoxon'’s matched-pairs signed-rank test.
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Evaluation of the relationships between peripheral cell
subsets and clinical response after tocilizumab therapy
Associations between changes in peripheral cell subsets
and changes in clinical endpoints (ACDAI and ASDAI)
after TCZ treatment are summarized in Table 4. A
significant correlation was observed between the change
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in the proportion of T, cells among CD4" T cells
and the changes in CDAI score from baseline to week
52: the greater the increase in proportion of T, cells
among CD4" T cells from baseline to week 52, the
greater the improvement in CDAI score during the same
period (p =-0.346, P=0.031). Also, the change in CD38

Table 4 Correlations of changes in disease activities with changes in peripheral cell subsets and surface markers after

52 weeks of treatment with tocilizumab?

ACDAI ASDAI

Subset P-value Spearman’s p P-value Spearman’s p
ACD4" T cells/lymphocytes 0.273 0.180 0.342 0.156
ANaive CD4" T cells/CD4" T cells 0653 -0074 0481 -0.116
AMemory CD4™ T cells/CD4™ T cells 0.653 0.074 0481 0.116
AHLA-DR" CD4" T cells/CD4" T cells 0.829 -0.036 0.710 -0.061
ACD38" CD4" T cells/CD4™ T cells 0.231 -0.196 0.089 -0.276
ACD69" CD4™ T cells/CD4™ T cells 0.746 —-0.054 0476 -0.118
ACDS" T cells/lymphocytes 0.698 -0.064 0.294 -0.172
ANaive CD8" T cells/CD8" T cells 0555 0.097 0.256 0.186
AMemory CD8" T cells/CD8" T cells 0.555 —-0.097 0.256 -0.186
AHLA-DR" CD8" T cells/CD8" T cells 0.566 —-0.095 0.955 0.009
ACD38" CD8" T cells/CD8" T cells 0.026* —-0.355 0.036* -0337
ACD69" CD8* T cells/CD8™ T cells 0.686 -0.067 0.357 -0.152
AT,QQ/CDAr+ T cells 0.031* —-0.346 0.033* —-0.342
ANaive Treg/Treq 0930 0015 0612 0084
AMemory Treg/Treq 0.924 -0.016 0.606 -0.085
AHLA-DR* Treg/Treg 0.270 —-0.181 0.279 —-0.178
ATH1/CD4" T cells 0.847 -0.032 0915 -0.018
AHLA-DR™ T41/ Ty 0.969 0.007 0.732 0.057
AT{2/CD4* T cells 0.354 0.153 0312 0.166
AHLA-DR" T2/ T2 0.291 -0.173 0.152 -0.234
AT17/CD4™ T cells 0.593 —-0.088 0442 -0.127
AHLA-DR" T417/ Ty17 0.366 -0.149 0.229 -0.197
AB cells/lymphocytes 0.958 —-0.009 0.709 —-0.062
ACDS80" B cells/B cells 0.740 0.055 0.546 0.100
ACD86" B cells/B cells 0.210 0.206 0.065 0.299
AHLA-DR" B cells/B cells 0.838 -0.034 0.841 -0.033
ANaive B cells/B cells 0.291 —0.174 0306 -0.168
AMemory B cells/B cells 0.291 0.174 0.306 —-0.168
ANK cells/lymphocytes 0.559 0.097 0.506 0.110
ACD80" CD14" monocytes/CD14™ monocytes 0.645 -0.076 0.699 —0.064
ACD86" CD14" monocytes/CD14* monocytes 0440 0.127 0.776 0.047
AHLA-DR" CD14" monocytes/CD14" monocytes 0415 -0.134 0.138 -0.242
ACD69" CD14" monocytes/CD14* monocytes 0430 -0.130 0.258 -0.186
ACD16"CD14" monocytes/CD14" monocytes 0.120 -0.253 0.203 -0.208
ACD16™CD14" monocytes/CD14" monocytes 0.121 0253 0.204 0.208

CDAI, Clinical Disease Activity Index; HLA, Human leukocyte antigen; NK, Natural killer; SDAI, Simplified Disease Activity Index; Ty, Helper T cell; T,eq, Regulatory

T cell. *Significant correlation using Spearman’s rank correlation coefficient.
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expression on CD8" T cells over 52 weeks was negatively
correlated with change in CDAI score (p=-0.355,
P =0.026). The other peripheral cell subsets, including
naive and memory CD4" T cells, HLA-DR'CD4" T
cells, CD69*CD4" T cells, HLA-DR*CDS8" T cells, HLA-
DR* T, naive and memory B cells, CD86" B cells,
HLA-DR'CD14" monocytes, CD69"CD14" monocytes,
CD16"CD14" monocytes and CD16 CD14" monocytes,
the proportions of which significantly changed over
52 weeks (as shown above), did not demonstrate any
correlation with the change in CDAI score. The same
results were found when ASDAI was used as the clinical
endpoint.

Association between the change in T,.q cells and the
effectiveness of tocilizumab therapy

The time course of changes in T, cells as a proportion of
CD4" T cells is shown in Figure 1A. The median propor-
tion of T4 cells significantly increased over 52 weeks from
3.6 (IQR, 2.2 to 4.3) to 5.6 (IQR 4.5 to 7.1) (P < 0.001). The
change in CDAI and SDAI scores at week 52 was signifi-
cantly associated with the change in T, cells at week 52
(Table 4, Figure 1B). Of the 39 patients examined in this
study, 21 (53.8%) met the CDAI criteria for remission and
22 (56.4%) attained SDAI remission at week 52. When we
divided the patients into two groups according to their re-
mission status at week 52, the change in peripheral blood
Tyeq cells was significantly higher in the remission group
than in the nonremission group at week 52 (Figure 1C).
Moreover, the proportion of peripheral blood T\, cells was
significantly higher in the remission group than in the non-
remission group at week 52 (Figure 1D).

As for CD38 expression on CD8" T cells, the overall
expression did not change during 52 weeks (P =0.913),
and there was no difference in its proportion between the
remission and nonremission groups at Week 52 (P = 0.453
for CDAI, P = 0.345 for SDAI).

Discussion
In this article, we report the results of the first comprehen-
sive study to show the effect of TCZ on various peripheral
cell subsets. In this study, we have shown that the propor-
tion of CD4*CD25*CD127"°" Teg cells among CD4" cells
and the proportion of HLA-DR"-activated T\, cells among
T,eg cells significantly increased from baseline over the
course of treatment with TCZ, and also that the propor-
tions of CD20*CD27" memory B cells, HLA-DR'CD14"
activated monocytes, CD69"CD14" activated monocytes,
and CD16"CD14" nonclassical monocytes significantly de-
creased from baseline. Among them, only the increase in
Teg cells was significantly associated with achieving remis-
sion by TCZ treatment.

Related studies have reported the increase in T,
cell levels 1 year after TCZ administration in a small
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population [20], for 3 months [15] and for 6 months
[12]. Though definitions of T, cells in our study, using
only cell surface markers without stimulatory modification
for cells in vitro, were different from those in these previ-
ous studies, our results showed the same trends as previ-
ously reported. The mechanism is a question that is not
yet fully understood. However, this is still an important
biomarker, as no suitable biomarker that can help predict
outcome of RA has not been identified.

Several mechanisms may contribute to the potentiation
of T,eg cells by TCZ therapy. It is conceivable that IL-6
has an effect on T, differentiation via inhibiting the ex-
pression of a specific transcriptional factor, FoxP3 [21,22].
This may suggest a mechanism by which neutralizing of
IL-6 signaling in patients with RA can induce an increase
in the number and function of T, cells. The quantitative
increase in T, cells expressing elevated levels of human
leukocyte antigen (HLA)-DR in patients with RA treated
with TCZ could also be a result of activation and prolifera-
tion of preexisting T,y cells or of their differentiation by
conversion from Foxp3™ precursors.

One question arising from the result is whether the in-
crease of T,., proportion after TCZ therapy is a result of
disease remission or is attributable to use of TCZ. To
answer the question, we also analyzed peripheral T,eq
cells in 12 patients with RA longitudinally treated with
MTX alone (Additional file 1: Table S4). All the pa-
tients achieved LDA or remission at week 52 after start-
ing MTX therapy (Additional file 1: Figure S3). The
proportion of T, cells did not show a certain tendency
or change over 52 weeks after administration of MTX
(P=0.729) (Additional file 1: Figure S4A). In addition,
the change in T, cells at week 52 was not associated
with the change in CDAI and SDAI scores at week 52
(Additional file 1: Figure S4B). These results suggest that,
albeit the comparison in a small number of patients with
MTX, the increase in T\, proportion after TCZ therapy is
not a result of disease remission but caused by TCZ
therapy itself.

Another question is whether other biologic agents for
RA treatment also induce T, cells. It has been reported
that neither adalimumab, an anti-tumor necrosis factor
(anti-TNF) mADb, nor etanercept, a soluble TNF receptor,
modified percentages or absolute numbers of circulating
CD4*CD25"eh T,eg cells or other T,., phenotypes after
being administered for 6 and 12 weeks to patients with
RA, regardless of their response [23]. However, there is
one report that high concentrations of TNFa can block
the immunosuppressive functions of T, cells in vitro
and that the treatment of patients with RA with inflixi-
mab, an anti-TNF mAb, bolsters T,.; suppression of the
proliferation of effector cells [24]. It is assumed that these
conflicting results might be ascribed to a small number of
subjects (N=10 to 30) and a short observational period
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Figure 1 Relations between effects of tocilizumab on the proportion of regulatory T cells and clinical responses. (A) Chronological
change in the proportion of regulatory T (T,eo) cells among CD4™ T cells from baseline to week 52 of tocilizumab (TCZ) treatment. (B) The
relationships between the change in clinical activities (Clinical Disease Activity Index (ACDAI) and Simplified Disease Activity Index (ASDAI)) and
the change in proportion of T cells among CD4+ T cells (AT,.,/CD4) at week 52. (C) The relationships between CDAI and SDAI scores at week
52 and the change in proportion of T4 cells among CD4™ T cells (AT o/CD4) at week 52. (D) The relationships between CDAI and SDAI scores at
week 52 and the proportion of T cells among CD4" T cells at week 52. The squares signify medians and interquartile ranges, and the diamonds
signify means and 95% confidence intervals. Data were analyzed by using the Kruskal-Wallis test (A), Spearman’s rank correlation coefficient

(B) and the Wilcoxon rank-sum test (C,D). *Significant differences.

(12 to 24 weeks). Regarding abatacept, the therapy dimin-  the present study indicate a part of the unique mechan-
ishes the absolute numbers of T4 cells but enhances their  ism of TCZ.

function in patients with RA [25]. It is conceivable that Although much still remains to be clarified about how
the different targets of these therapies influence the dif- T, defects might contribute to the pathogenesis of RA,
ferent performance of T, cells and that the results of  approaches that specifically boost T, activity could be
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useful in the treatment of RA. In this study, the change
in T,z was correlated with disease activities after TCZ
therapy. This is the first time that the effect of increasing
T\cg has been shown to be strictly associated with clin-
ical efficacy.

The effects of IL-6 on the late stages of B cell differen-
tiation in vitro are well documented [26]. In vivo IL-6
overexpression is associated with B cell hyperactivity,
autoantibody production and immunopathology [27,28].
In patients with RA, chronic activation of B cells and an
accumulation of memory B cells in the peripheral blood
and synovial membranes have been described [29,30].
Within this context, B cell-targeted therapies utilizing
rituximab have been widely explored in RA. Because IL-
6 has been described as an important B cell-stimulating
factor with effects on memory B cell survival and on
plasma cell differentiation and survival in the bone mar-
row, it is easy to comprehend the effect of TCZ on per-
ipheral B cells, especially the ratio of naive B cells to
memory B cells [31]. Although the proportion of mem-
ory B cells significantly decreased over 52 weeks of TCZ
therapy, it did not correlate with any component of ac-
tivity status, SJC, TJC, Pt-VAS, D-VAS, CRP and ESR.
Therefore, the decrease can be attributed to the effect of
TCZ therapy rather than to disease activity. When we
compared the proportion of B cell subsets in the same
12 patients that were effectively treated with MTX alone
during 52 weeks as mentioned above (Additional file 1:
Table S5), we observed that the proportion of memory B
cells tended to decrease in patients with MTX therapy,
as in the case with TCZ, suggesting that the trend was
not specific to TCZ therapy. However, the proportions
of CD80" and CD86" B cells among all B cells did not
change in patients who received MTX therapy. There-
fore, the decrease in the proportion after TCZ therapy
may be characteristic of TCZ.

In peripheral blood, two monocyte subpopulations
with distinct functional properties have been defined by
their expression of CD14 and CD16 molecules. Com-
pared with classical CD14°CD16  monocytes, CD16"
nonclassical monocytes have been shown to possess
several features of inflammatory tissue macrophages,
notably, higher expression of major histocompatibility
complex class II antigens and several adhesion molecules
and lower expression of IL-10, transforming growth factor
[, macrophage colony-stimulating factor, IL-1p and TNF«
[32]. The pathophysiologic significance of the CD16" non-
classical monocyte subset has been demonstrated by its
expansion under various inflammatory conditions, such as
RA, sepsis, asthma and solid tumors. We demonstrated
that TCZ reduced the peripheral level of CD16* non-
classical monocytes. Although it remains to be clarified
how monocytes differentiate into CD16" nonclassical
monocytes, this study revealed that IL-6 appears to be
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involved in the proliferation of CD16" nonclassical
monocytes or in shifting the balance of monocytes to
CD16" nonclassical monocytes. In the same 12 patients
with RA described above who were treated with MTX
alone, the proportions of HLA-DR'CD14" monocytes
and CD69'CD14" monocytes among all monocytes did
not change (Additional file 1: Table S5), which was dif-
ferent from the results for TCZ. The decrease of those
activated monocytes after TCZ therapy did not seem to
be the cause of disease remission, but rather the effect
of TCZ. The proportion of CD16"CD14" nonclassical
monocytes tended to decrease during 52 weeks of MTX
therapy compared with that of TCZ therapy. This may
have been a result of the improvement of RA disease ac-
tivity, or there may some actions on immune cells in
common between TCZ and MTX.

Conclusions

Our findings suggest that TCZ affected proportions of
circulating T, cells, B cells and monocytes in patients
with RA. Especially, the increase in the proportion of
Teg cells among CD4" T cells correlated well with clinical
response. Then the possible mode of action of TCZ against
RA could increase the proportion of T, cells.

Additional file

Additional file 1: Table S1. Identified subsets of peripheral blood
mononuclear cells defined using cell surface markers. Table S2.
Correlations between peripheral T cell subsets and serum markers,
composite measures of disease activity, and Health Assessment
Questionnaire Disability Index score at baseline. Spearman’s rank
correlation coefficient was used for analysis. Table S3. Correlations
between peripheral B cell subsets, natural killer (NK) cells and monocyte
subsets and serum markers, composite measures of disease activity, and
Health Assessment Questionnaire Disability Index score at baseline.
Spearman’s rank correlation coefficient was used for analysis. Table S4.
Baseline demographics and clinical characteristics of the patients treated
with MTX. Table S5. Changes in proportions (%) of subsets and surface
markers of B cells and monocytes during MTX treatment. Subsets and
surface markers were selected as the changed ones in TCZ therapy.
Figure S1. Gating strategy for flow cytometry analysis of T..q cells

and subsets of monocytes. Figure S2. Chronological changes in and
proportions of clinical activity from baseline until week 52 of TCZ treatment.
Figure S3. Chronological changes in clinical activity from baseline until
week 52 of MTX treatment. Figure S4. Relationships between effects of
MTX on the proportion of T, cells and clinical responses. (A) Chronological
change in the proportion of T,eq cells among CD4" T cells from baseline to
week 52 of MTX treatment. (B) The relationships between the change in
clinical activity (ACDAI and ASDAI scores) and the change in proportion of
Treg Cells among CD4+ T cells (AT,o/CD4) at week 52. The squares signify
medians and interquartile ranges.
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